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Abstract Model-based and fuzzy clustering methods represent widely used ap-
proaches for soft clustering. In the former approach, it is assumed that the data
are generated by a mixture of probability distributions where each component rep-
resents a different group or cluster. Each observation unit is ex-post assigned to a
cluster using the so-called posterior probability of component membership. In the
latter case, no probabilistic assumptions are made and each observation unit belongs
to a cluster according to the so-called fuzzy membership degree. The aim of this
work is to compare the performance of both approaches by means of a simulation
study.
Abstract I metodi basati sugli approcci model-based e fuzzy rappresentano i piú
comuni approcci di soft clustering. Nel primo approccio si assume che i dati siano
generati da una mistura di distribuzioni di probabilitá nella quale ciascuna com-
ponente individua un gruppo. Le osservazioni sono assegnate ai gruppi ex-post con
le cosiddette probabilitá a posteriori (di appartenenza alle componenti). Nell’altro
approccio, che non prevede alcuna assunzione probabilistica, le osservazioni ven-
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gono assegnate ai gruppi con i cosidetti gradi di appartenenza fuzzy. L’obiettivo di
questo lavoro é confrontare le performance dei due approcci mediante uno studio
di simulazione.

Key words: Cluster analysis, Model-based approach, Fuzzy approach

1 Introduction

In the last years, model-based and fuzzy clustering methods have received a great
deal of attention. The two classes of methods are very different from a theoretical
point of view. In the model-based framework, probabilistic assumptions are made.
The data are generated by a mixture of known probability distributions (usually
Gaussian). Each component of the mixture describes a cluster and, therefore, each
cluster can be mathematically represented by a parametric distribution. In practice,
the observation units are allocated to clusters via the so-called posterior probabil-
ities of component membership and, for each observation unit, the cluster assign-
ment is carried out by looking at the maximum posterior probability. In the fuzzy
approach to clustering, the clusters are no longer represented in terms of parametric
distributions. The observation units belong to the clusters according to the so-called
membership degree, taking values in [0,1]. From a practical point of view, it is quite
obvious that such two classes of clustering methods share similar features. Both of
them produce a soft partition of the observation units and the posterior probability of
component membership may play a role similar to the membership degree. Never-
theless, as far as we know, a thorough comparison between model-based and fuzzy
clustering methods has never been carried out except for a few limited cases (see,
e.g., [6, 10]). The aim of this work is to fill this gap by comparing the performances
of four clustering methods, two from each class, in a simulation experiment.

2 Model-based clustering

Model-based clustering is a popular family of unsupervised learning methods for
data classification. Such methods assume that the data are generated by a statistical
model and try to recover it from the data. Let x = (x1,x2, . . . ,xn) ∈ Rp be a random
sample of i.i.d. observations, where p denotes the number of variables. The random
vector xi is assumed to arise from a finite mixture of probability density functions:

f (xi;θθθ) =
g

∑
k=1

πk f (xi|θθθ k), (1)

where πk, k = 1, . . . ,g, such that πk > 0 and ∑
g
k=1 πk = 1, are the mixing proportions,

g is the number of components, f (x|θθθ k) is the component density (k = 1, . . . ,g)
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and ΦΦΦ = (π1,π2, . . . ,πg,θθθ 1, θθθ 2, . . . ,θθθ g) is the parameter vector [20]. Each mixture
component density belongs to a specific parametric class and represents a group or
cluster. Even thought it is not necessary that each mixture component density arises
from the same parametric distribution family, we will focus only on the case where
the parametric distribution family is the same for each mixture component.

Maximum likelihood estimation of model parameters in ΦΦΦ is done by applying
the Expectation-Maximization (EM) algorithm [11]. It is an iterative procedure to
estimate the parameters of a finite mixture model by maximizing the expected value
of the complete data log-likelihood by alternating two different steps. The Expecta-
tion step (E-step) computes the expected value of the complete data log-likelihood,
and the Maximization step (M-step) maximises the expected value previously com-
puted with respect to ΦΦΦ . The log-likelihood can be derived as follows:

`(ΦΦΦ) = log
n

∏
i=1

g

∑
k=1

πk f (xi|θθθ k) =
n

∑
i=1

log
g

∑
k=1

πk f (xi|θθθ k). (2)

Suppose to have an unobservable process z = (z1, . . . ,zn). We refer to this new
dataset (x,z) as the complete data with density f (x,z|θθθ). The complete data log-
likelihood is given by

`c(ΦΦΦ) = log
n

∏
i=1

f (xi,zi|θθθ) =
n

∑
i=1

log{ f (zi|θθθ) f (xi|zi,θθθ)}. (3)

The E-step computes the expected value of the complete-data log-likelihood in (3)
with respect to the missing part:

Q(ΦΦΦ |ΦΦΦ t) = EΦΦΦ
t [`c(ΦΦΦ)] = EΦΦΦ

t

[
n

∑
i=1

log f (zi|θθθ t) f (xi|zi,θθθ
t)

]
. (4)

The M-step maximises equation in (4), such that:

ΦΦΦ
t+1 = argmax

ΦΦΦ

Q(ΦΦΦ |ΦΦΦ t). (5)

The procedure is iterated until some convergence criterion is satisfied. The EM algo-
rithm guaranteesthat the observed log-likelihood is nondecreasing and, under fairly
general conditions, the sequence converges to at least a local maximum [19]. Further
details can be found in, e.g., [19, 20].

2.1 Finite mixtures of Gaussian densities

Due to its flexibility and mathematical tractability, the most popular model for clus-
tering postulates that the data follow a Gaussian mixture distribution, i.e. f (xi, |zik =
1,θθθ k)∼N (µµµk,ΣΣΣ k) [15]. The finite mixture of Gaussian densities is then given by
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f (xi;θθθ) =
g

∑
k=1

πkφ(xi|µµµk,ΣΣΣ k), (6)

where θθθ = {π1,π2, . . . ,πk−1,µµµ1, . . . ,µµµk,ΣΣΣ 1, . . . ,ΣΣΣ k} denotes the parameter set for
the finite mixture model and φ(xi|µµµk,ΣΣΣ k) the underlying component-specific den-
sity function with parameters µµµk, ΣΣΣ k, k = 1, . . . ,g.

Thus, model in (6) generates ellipsoidal clusters centred at the mean vector µµµk,
with ΣΣΣ k controlling the other geometrical properties of each cluster. Parsimonious
parametrisations of the cluster covariance matrices can be obtained through the
eigendecomposition ΣΣΣ k = λkDkAkD

>
k [4, 9], where λk is a scalar controlling the

volume of the ellipsoid, Ak is a diagonal matrix controlling its shape and Dk is an
orthogonal matrix controlling the orientation of the ellipsoid. Such an eigendecom-
position generates a class of models with different geometrical properties. For some
covariance parametrisations a closed formula for the M-step in the EM algorithm
can be obtained [9]. The estimation for each of the 14 different models resulting
from the eigendecomposition of the within clusters covariance matrices is imple-
mented in the R package mclust [23].

The number of clusters and the parametrisation of the covariance matrices are
selected using selection criteria, such as the Bayesian information criterion (BIC)
[14, 22].

2.2 Finite mixtures of t densities

In [21], a heavy-tailed alternative to the component-specific density (6) is proposed
by replacing the Gaussian distribution with a t distribution as follows:

f (xi;θθθ) =
g

∑
k=1

πk ft(xi|µµµk,ΣΣΣ k,νk), (7)

where θθθ = {π1,π2, . . . ,πk−1,µµµ1, . . . ,µµµk,ΣΣΣ 1, . . . ,ΣΣΣ k,ν1, . . . ,νk} and ft(xi|µµµk,ΣΣΣ k,νk)
is the multivariate t distribution with mean µµµk, covariance matrix ΣΣΣ k and νk de-
grees of freedom. As in the Gaussian case, the EM algorithm is employed for max-
imum likelihood estimation of θθθ [2, 21]. In the present context, a parsimonious
parametrization can be based on the same eigendecomposition of the covariance
matrices as in the Gaussian case and constraining the degrees of freedom to be
equal or not across groups [1]. This produces a class of finite mixture models with
t-distributed components called tEIGEN. The tEIGEN family is implemented in the
R package teigen [1, 2].
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3 Fuzzy clustering

As opposed to the model-based framework, no probabilistic assumptions are made
in the fuzzy approach to clustering. The complexity of the clustering process is man-
aged in terms of fuzziness [24]. The observation units are assigned to the clusters
according to the so-called fuzzy membership degree, taking values in [0,1]. This is
inversely related to the dissimilarity between the observation units and the cluster
prototype. A membership degree approaching 1 implies that the observation unit is
close to the corresponding prototype and therefore it can be clearly assigned to the
cluster. In the literature, there exist several fuzzy clustering methods. Among them,
the most common one is the Fuzzy k-Means (FkM) algorithm [5]. In the following
subsections, we will recall the FkM algorithm and the closely related Gustafson-
Kessel variant [12]. The algorithms are implemented in the R package fclust [13].

3.1 Fuzzy k-Means

The Fuzzy k-Means (FkM) clustering algorithm [5] aims at grouping n observation
units in k clusters by solving the following constrained optimization problem:

min
U,H

JFkM = ∑
n
i=1 ∑

g
k=1 um

ikd2 (xi,hk) ,

s.t. uik ≥ 0, i = 1, . . . ,n, k = 1, . . . ,g,
∑

g
k=1 uik = 1, i = 1, . . . ,n.

(8)

In (8), the term uik denotes the membership degree of observation unit i to cluster
k, as a generic element of the matrix U of order (n× g). The row-wise sum of U
is equal to 1. Furthermore, hk =

[
hk1, . . . ,hkp

]
, the k-th row of the prototype matrix

H of order (g× p), is the prototype for cluster k, k = 1, . . . ,g. Finally, d2 (xi,hk) is
the squared Euclidean distance between observation unit i and prototype k, while
m > 1 is the fuzziness parameter which tunes the level of fuzziness of the obtained
partition. The higher the values of m, the fuzzier the partition with membership
degrees tending to 1

k . When m is close to 1, the FkM solution approaches that of the
standard (non-fuzzy or hard) k-means [18] with membership degrees equal to either
0 or 1. The standard choice is m = 2.

The solution of (8) is carried out through an iterative optimization algorithm by
updating the elements of U as follows

uik =
1

∑
g
k′=1

(
d2(xi,hk)

d2(xi,hk′)

) 1
m−1

, i = 1, . . . ,n, k = 1, . . . ,g, (9)

and the rows of H as

hk =
∑

n
i=1 um

ikxi

∑
n
i=1 um

ik
, k = 1, . . . ,g. (10)
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In order to select the optimal number of clusters, several cluster validity indexes can
be adopted. A popular choice is the Fuzzy Silhouette index [8].

3.2 Gustafson-Kessel variant of FkM

The major limitation of the FkM algorithm is that the obtained clusters are defined
to be spherical. Therefore, FkM may be inadequate whenever the clusters have dif-
ferent geometrical shapes. In such cases, the so-called Gustafson-Kessel variant of
the FkM algorithm can be applied, hereinafter GK-FkM [12]. The main difference
between FkM and GK-FkM is that, in the latter, a Mahalanobis-type dissimilarity is
considered, that is, d2 (xi,hk) is replaced by

d2
M (xi,hk) = (xi−hk)

>
Mk(xi−hk), (11)

with Mk symmetric and positive definite. The GK-FkM can then be formulated as

min
U,H,M1,...,Mg

JGK−FkM = ∑
n
i=1 ∑

g
k=1 um

ikd2
M (xi,hk) ,

s.t. uik ≥ 0, i = 1, . . . ,n, k = 1, . . . ,g,
∑

g
k=1 uik = 1, i = 1, . . . ,n,
|Mk|= ρk > 0 k = 1, . . . ,g.

(12)

As the cost function is linear with respect to the matrices Mk, a trivial solution with
Mk = 0,k = 1, . . . ,g would be obtained. To avoid it, Mk must be constrained. A way
to do it is to consider volume constraints such that the determinant of Mk is positive.
Note that the most common choice is ρk = 1, k = 1, . . . ,g.

An iterative solution of (12) can be found by updating U and H according to (9)
and (10) provided that d2 is replaced by d2

M and Mk by

Mk = [ρk|Vk|]
1
n V−1

k , k = 1, . . . ,g, (13)

where Vk is the fuzzy covariance matrix for cluster k given by

Vk =
∑

n
i=1 um

ik(xi−hk)(xi−hk)
>

∑
n
i=1 um

ik
, k = 1, . . . ,g. (14)

To avoid possible numerical problems for updating Mk, a computational improve-
ment has been proposed in [3] where the condition number of Mk is constrained to
be higher than a prespecified threshold. Note that this condition is similar to that
imposed to covariance matrices in finite mixture models with either Gaussian or t
components [16, 17].
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Fig. 1 Example of simulated data

4 Simulation study

A simulation study has been carried out to compare the previously described clus-
tering methods. Simulated data sets have been generated randomly in a full factorial
design; an example of generated data is displayed in Figure 1. In the simulation
study, the focus lies on assessing the performance of the methods in recovering the
cluster structure and checking whether the design variables influence the differential
performance of the methods. The results will be presented at the meeting.
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