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Abstract In this paper we propose a robust version of Reduced and Factorial k-
means, based on a trimming strategy. Reduced and Factorial k-means are data re-
duction techniques for simultaneous dimension reduction and clustering. The occur-
rence of data inadequacies can invalidate standard analyses. An appealing approach
to develop robust counterparts of Reduced and Factorial k-means is given by impar-
tial trimming. The idea is to discard a fraction of observations that are selected as
the most distant from the centroids.
Abstract In questo lavoro viene proposta una versione robusta di Reduced e Fac-
torial k-means, basata su una procedura di trimming. Reduced e Factorial k-means
sono tecniche che simultaneamente realizzano una riduzione della dimensionalitá e
della numerosità, mediante analisi in componenti principali e k-means, rispettiva-
mente. La presenza di contaminazione nei dati puó invalidare le analisi standard.
Un approccio utile per sviluppare una procedura robusta alla presenza di valori
anomali é rappresentato dal trimming, che si basa sull’idea di eliminare le osser-
vazioni piú distanti dai centroidi stimati.
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1 Introduction

Reduced (De Soete and Carroll, 1994) and Factorial k-means (Vichi and Kiers,
2001) (RKM and FKM, respectively, hereafter) are data reduction techniques aimed
at performing principal components and k-means clustering simultaneously. The
main idea is that cluster centroids are located in a low dimensional subspace deter-
mined by the most relevant features.

Let X be the n× p zero centered data matrix, where n denotes the number of
objects and p the number of variables, k be the number of clusters and q < p the
number of components, with k ≥ q + 1. We denote by U the n× k membership
matrix whose ith row has a one corresponding to the cluster assignment of the ith

object and zero otherwise, whereas A is the p× q loadings matrix and Y = XA is
the n× q scores matrix. RKM looks for centroids in a low dimensional subspace
that minimize the distance of the data points from such centroids. The optimization
problem connected with RKM can be expressed as

min
A,Ȳ
||X−UȲA

T ||2 = min
A,Ȳ

n

∑
i=1

min
c=1,...,k

p

∑
j=1

(
xi j−

q

∑
j′=1

ȳc j′a j′ j

)2

, (1)

where Ȳ is the k×q matrix collecting centroids ȳc = (ȳc1, . . . , ȳcq). In a complemen-
tary fashion, FKM finds low dimensional centroids such that the scores, rather than
the original data, are closest to them, that is

min
A,Ȳ
||XA−UȲ||2 = min

A,Ȳ

n

∑
i=1

min
c=1,...,k

q

∑
j=1

(yi j− ȳc j)
2 . (2)

Both RKM and FKM are built on conventional k-means that can be badly affected
by the occurrence of contamination in the data (the reader is pointed to Farcomeni
and Greco (2016) for a recent account on robustness issues in data reduction). In this
paper, we aim at developing a robust counterpart of RKM and FKM stemming from
trimmed k-means (Cuesta-Albertos et al, 1997). Let us assume that a fraction α of
data points is prone to contamination and therefore discarded. The remaining part
of clean objects is then used to solve the k-means optimization problem. Trimmed
data are not assigned to any cluster and do not contribute to centroids estimation.
The key feature is that trimming and estimation are performed simultaneously: this
approach is usually referred as impartial trimming (Gordaliza, 1991). Here, in a
similar fashion, it is suggested to introduce impartial trimming into problems (1)
and (2). The interesting features of the proposed methodologies rely on the ability
of the method, on the one hand, to detect the anomalous data and rightly assign the
remaining ones to clusters and, on the other hand, to estimate clusters’ centroids
in the presence of outliers. These objectives are shown in the following illustrative
examples. Since the complementary nature of the RKM and FKM models, we only
consider the latter model both for simulated and real data.
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Figure 1 displays the result of applying trimmed FKM (tFKM) to three simulated
datasets of size 400×8. All the panels display the scores lying in a two dimensional
subspace, where the data are assumed to be clustered. A sample of 320 genuine
scores has been drawn from a mixture of three bivariate normal with standardized
components and null correlation, that is we are dealing with spherical clusters. Then
80 outliers were added, that are simulated from a different random mechanism. Gen-
uine data have been generated according to the scheme described in Timmerman
et al (2010). Three different scenarios have been considered. In the top left panel,
the anomalous data have been randomly generated from a bivariate normal centered
at the mean of the centroids corresponding to the three original groups with a disper-
sion large enough to produce both inner and outer contaminations. In the top middle
panel, outliers are clustered to form a well separated group from the genuine obser-
vations. In the top right panel, outliers are clustered along some linear structures. In
all scenarios, we observe the capability of the proposed method both in detecting
outliers and adapting to the true underlying clustering structure. On the contrary,
in the first and third data configuration, the standard procedure allocates outliers in
the three clusters leading to biased centroids’ estimates, inflated within-group vari-
ances and lack of separation among them, whereas in the second scenario, two well
separated clusters are wrongly merged together.

2 Trimmed RKM and FKM

The optimization problems connected with trimmed RKM and FKM (tRKM and
tFKM, hereafter) can be expressed as follows, respectively:

min
z∈Z

min
A,Ȳ

n

∑
i=1

zi min
c=1,...,k

p

∑
j=1

(
xi j−

q

∑
j′=1

ȳc j′a j′ j

)2

(3)

and

min
z∈Z

min
A,Ȳ

n

∑
i=1

zi min
c=1,...,k

q

∑
j=1

(yi j− ȳc j)
2 , (4)

where z = (z1,z2, . . . ,zn)
T

is a binary vector and Z = {z : ∑
n
i=1 zi = b(n(1−α)c}.

The objective functions (3) and (4) are such that data points for which zi = 0 do not
contribute to their minimization. It is worth noting that classical RKM and FKM are
included in the above definitions as limiting cases when α = 0.

Minimization of the objective functions (3) and (4) requires an iterative algo-
rithm characterized by the introduction of concentration steps. The concentration
step (Rousseeuw and Driessen, 1999; Gallegos and Ritter, 2005; Farcomeni, 2009)
is meant to detect the nα largest distances with respect to the current closest cen-
troid and trim the corresponding observations. Then, the loss functions in (1) or
(2) are minimized based on the observations not flagged for trimming. The final
U obtained at convergence simultaneously identifies the optimal cluster for each
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Fig. 1 Three simulated data sets with true assignments (top row), classical classification from FKM
(middle row), robust classification from tFKM (bottom row). The symbol � is used to denote true
outliers in the top row and trimmed observations in the other rows.
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observation that is not trimmed and trimmed observations, which correspond to a
constant row of zeros. Both algorithms have been implemented into the statistical
environment R by combining the main features of the functions cluspca from
package clustrd and tkmeans from package tclust.

3 Selecting the number of clusters, components and the
trimming level

The selection of the number of clusters k can be pursued by paralleling the approach
described in Garcı́a-Escudero et al (2011): the strategy could be to display the ob-
jective function at convergence against the trimming level α for different choices of
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k. Then, the number of clusters should be set equal to the minimum k for which there
is no substantial improvement in the loss function when adding one group more.

In order to choose the number of components q, it is suggested to explore the
quality of the fitted model by varying q from 1 to (k− 1). For instance, this task
could be exploited by looking at the rate of explained robust variance or the adjusted
Rand index. Then, the number of components can be augmented until there is no
more significant increase in the selected criterion.

The selection of α could be based on the inspection of the G-statistic or of the
generalized G-statistic introduced in Farcomeni (2009). Parameters’ estimates or
the objective function itself are monitored by varying α . Then, we select a trim-
ming level above which the differences in parameters’ estimates or in the objective
function become negligible.

4 Macroeconomic data

This is a 20×6 data set, already analyzed in Vichi and Kiers (2001), concerning the
macroeconomic performance of national economies in September 1999. Six main
economic indicators, that measure the percentage change from the previous year,
have been considered: gross domestic product (GDP), leading indicator (LI), un-
employment rate (UR), interest rate (IR), trade balance (TB), net national savings
(NNS). A classification of the countries into k = 3 groups is considered, that is ex-
pected to reflect the striking features of economic development and to take into ac-
count the differences in growth among them. The G-statistic leads to select α = 0.15
(i.e. 3 trimmed observations). Figure 2 gives the classification resulting from FKM
and tFKM. There are remarkable differences between the classical and the robust
analysis, mainly due to the three outlying countries that have been detected. The
cluster profiles and the raw score measurements for the outlying countries are given
in Table 1. It can be seen that the three clusters are well separated, even if Cluster 2
and Cluster 3 are separated only w.r.t. the second component. The first component
is mainly determined by NNS (positive sign), UR (positive sign) and TB (negative
sign), whereas the second is dominated by GDP. The first cluster is composed by 4
countries that are characterized by the largest values on the first component, that is
countries showing large values of NNS or UR and small values of TB. The second
cluster is composed by 5 countries. It is characterized by the largest values on the
second component, that is countries with large GDP. The third cluster is composed
by 8 countries, that are those exhibiting the lowest growth in GDP. The outlying
countries Sweden and Japan are easily explained. Sweden is well spotted on the left
side and it actually shows the lowest NNS; Japan, on the contrary, is well detected
along the first component since it exhibits the minimum growth in GDP. The ex-
planation for Denmark is more complicated: it could be included in Cluster 3 but it
shows an unexpected low growth in UR and NNS.
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Fig. 2 Macroeconomic data: classification from FKM (left) and tFKM (right). Trimmed observa-
tions in the right panel are denoted by �.
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Table 1 Macroeconomic data: cluster profiles and raw scores for the outlying countries.

Comp. 1 Comp. 2 Comp.1 Comp. 2
Cluster 1 1.782 0.252 Denmark -1.106 -0.483
Cluster 2 0.014 0.830 Japan 0.296 -1.491
Cluster 3 -0.034 -0.500 Sweden -0.879 1.220
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