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Abstract We analyse the relationship between student ratings of university courses
and several characteristics of the student, the course and the teacher. In particu-
lar, we exploit data from a survey collecting information about teacher beliefs and
practices at the University of Padua in a.y. 2012/13. Student ratings are nested into
classes, calling for multilevel modelling. However, due to survey non-response, the
information about beliefs and practices is missing for about half of the teachers, pos-
ing a serious issue of missing data at level 2. To avoid listwise deletion, we make
multiple imputation via fully conditional specification, exploiting information at all
hierarchical levels. The proposed approach turns out to be effective. We found that
some of the teacher beliefs and practices are significantly related to student ratings.
Abstract Il presente lavoro analizza la relazione tra le valutazioni dei corsi univer-
sitari fornite dagli studenti e le caratteristiche di docenti e studenti. I dati proven-
gono da un’indagine ad hoc svolta dall’Università di Padova nell’a.a. 2012/13 su
convinzioni e pratiche dei docenti universitari. La struttura gerarchica dei dati,
con valutazioni raggruppate per insegnamento, richiede l’uso di modelli multiliv-
ello. L’indagine presenta un alto tasso di non-risposta, ponendo un serio prob-
lema di dati mancanti a livello 2. Si considera un’imputazione multipla basata
sull’approccio fully conditional, sfruttando anche l’informazione proveniente dalle
unità di livello 1. I risultati ottenuti evidenziano l’efficacia del metodo utilizzato. In-
oltre, risulta che alcune delle convinzioni e delle pratiche adottate dai docenti sono
significativamente correlate alle valutazioni degli studenti.
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1 Introduction

We analyse student satisfaction, as measured by student evaluation of teaching
(SET). The peculiarity of the study lies in the availability of many variables about
teacher characteristics and beliefs, and teaching practices. This work exploits data
from the University of Padua for academic year 2012/13 about bachelor degree
courses. The data set is obtained by merging three different sources: (i) the tradi-
tional SET survey with 18 items, measured on a ten-point scale (1: low, 10: high);
(ii) administrative data on students, teachers and didactic activities; (iii) an online
survey carried out by the PRODID project on teacher beliefs and practices.

Data have a two-level hierarchical structure, with 56,775 student ratings at level
1 and 1,016 classes at level 2. The average class size is 79 (min 5, max 442). We
are interested in student satisfaction about two key aspects of teaching, i.e. teacher
ability to involve students (item D06 of the SET questionnaire) and teacher clarity
(item D07).

The analysis is based on the following bivariate two-level linear mixed model for
item m (m: 1 for D06, 2 for D07) recorded on student i in class j:

Ymi j = αm +βββ
′
mxi j + γγγ

′
mw j +um j + emi j (1)

where xi j is the vector of student covariates (level 1), and w j is the vector of teacher
and class covariates (level 2). Level 1 errors emi j are assumed to be independent
across students; level 2 errors (random effects) um j are assumed to be independent
across classes and independent from level 1 errors. We make standard assumptions
for the distributions of the model errors, including homoscedasticity (within each
outcome) and normality. Therefore, the response vector Yi j = (Y1i j,Y2i j)

′ has resid-
ual variance-covariance matrix Var(Yi j) = ΣΣΣ u +ΣΣΣ e, where ΣΣΣ u and ΣΣΣ e are the co-
variance matrices of the errors at level 2 and level 1, respectively.

The survey on teacher beliefs and practices has about fifty percent of missing
questionnaires, posing a serious issue of missing data at level 2. An analysis based
on listwise deletion would discard the entire set of student ratings for non responding
teachers, causing two main problems: (i) a dramatic reduction of the sample size,
and thus of the statistical power, and (ii) possibly biased estimates if the missing
mechanism is not MCAR.

2 Multiple imputation of level 2 covariates

In multilevel models, the treatment of missing data requires special techniques.
In fact, the data have a hierarchical structure and, thus, missing values can be at
any level of the hierarchy. Moreover, missing values can alter the variance compo-
nents and the correlations. Multiple imputation (MI) is the most flexible approach
to missing data. MI has been extended to the multilevel setting to deal with these
special issues, following two main approaches (Mistler and Enders, 2017; Grund et
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al., 2018): fully conditional specification, also known as multivariate imputation by
chained equations, and joint modelling.

In our case study, the substantive model (1) is multilevel, however missing data
are only at level 2. This feature makes the imputation simpler than in the general
multilevel setting. Indeed, we can apply standard MI techniques to level 2 data and,
then, merge level 1 and level 2 data to obtain complete datasets.

Besides this simplification, the MI step for the data under investigation remains
a challenging matter, since we have to deal with a large number of categorical vari-
ables having a high percentage of missingness. As stated before, about 50% of the
teachers did not respond to the whole questionnaire, thus producing missing values
on 10 binary items (teacher practices) and 20 ordinal items (teacher beliefs on a
seven-point scale). In particular, the imputation model at level 2 should include all
the level 2 covariates and information on level 1 variables, especially on the response
variables.

Several strategies to summarize information from level 1 variables can be adopted
(Erler et al., 2016; Grund et al. 2017). Here, we choose to consider the cluster means
as they are rather effective and easy to be implemented in cases where level 1 vari-
ables (including the response) are completely observed, as in our case.

We perform multivariate imputation by chained equations using the mi command
of Stata (StataCorp, 2017). In our case, we use a binary logit as imputation model
for the 10 binary items (teacher practices), and a cumulative logit for the 20 ordinal
items (teacher beliefs). For all imputation models, we consider the following covari-
ates: the fully observed class and teacher characteristics, the cluster means of level
1 variables (covariates and outcomes), and the cluster size.

3 Results

The bivariate two-level model (1) is fitted by maximum likelihood on 10 imputed
data sets, and the results are combined with the standard MI rules. The analysis is
conducted using the gsem and mi commands of Stata (StataCorp, 2017).

We first fit the model without covariates in order to explore the correlation struc-
ture of the two outcomes, i.e. teacher ability to involve students and teacher clarity.
We find out that the ICC is about 30% for both outcomes. The two outcomes are
highly correlated (0.83), especially at level 2 (0.933).

Then, we add the available covariates in the model. These include 6 student char-
acteristics, centered on class averages (gender, age, high school grade, year of en-
rollment, regular student, number of exams passed in 2012), 8 fully observed covari-
ates at level 2, including teacher and course characteristics (gender, age, role, and
involment of the teacher in the course; credits, class size, school and compulsoriness
of the course) and 30 further level 2 covariates summarizing teacher practices and
beliefs. To ensure parsimony, we select a subset of the 30 practices and beliefs using
leaps and bounds method proposed by Furnival and Wilson (1974) and implemented
in the gvselect command of Stata (Lindsey and Sheather, 2010). Specifically, we
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apply the procedure to each equation of model (1) separately and retain in the final
model only those covariates significant for at least one of the two equations accord-
ing to the AIC criterion. Such a procedure leads to the selection of the following
binary indicators of teacher practices: Q01 – practicals, Q02 – exploiting contri-
bution from experts, Q07 – using multimedia resources. As regards teacher beliefs,
the following ordinal indicators are retained into the final model: Q12 – passion for
teaching, Q14 – usefulness of practicals, Q17 – usefulness of student opinions, Q23
– usefulness of student-oriented teaching, Q25 – need for teaching support, Q27 –
usefulness of sharing teaching experiences with colleagues.

To quantify the influence of missing data on the sampling variance of the pa-
rameter estimates, we can consider the fraction of missing information (FMI), i.e.
the ratio between the sampling variance among imputations and the total sampling
variance. For the imputed covariates, the FMI ranges from 0.15 to 0.68, with a me-
dian value equal to 0.44. The fraction of missing data is about 0.5; therefore, for the
majority of imputed covariates, the trade-off between the sampling error inflation
due to MI and its reduction due to sample size increase is favourable.

The main substantive finding is that teacher practices and beliefs from the PRO-
DID survey are significantly related with the SET ratings. In particular, the item
practicals is negatively related to the outcomes, while contribution from experts is
positively related. As for teacher beliefs, passion for teaching and usefulness of
student opinions are positively associated with the ratings, while usefulness of prac-
ticals and need for teaching support are negatively associated with the ratings.

An alternative imputation method is joint modelling (e.g. Grund et al., 2017),
which allows to impute binary and ordinal data through latent normal variables.
We implement this approach using the R package jomo (Quartagno and Carpenter,
2017). However, in our case with 10 binary and 20 ordinal variables this approach
is not feasible due to the computational burden, unless we treat the ordinal variables
as continuous or we previously select a subset of the ordinal variables. The second
option is preferable to preserve the original scale of measurement. A thorough com-
parison between chained equations and joint modelling is the object of our future
research.
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