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Abstract In this work we consider a nonparametric likelihood approach to multi-
variate density estimation with a regularization based on the Laplace operator. The
complexity of the estimation problem is tackled by means of a finite element for-
mulation, that allows great flexibility and computational tractability. The model is
suitable for any type of bounded planar domain and can be generalized to the non-
Euclidean settings. Within this framework, we as well discuss a new approach to
clustering based on the concept of diffusion in a potential field, and a permutation-
based procedure for one and two samples hypothesis testing.
Abstract In questo lavoro viene considerato un metodo di stima della densità
tramite verosimiglianza non parametrica con un termine di regolarizzazione basato
sull’operatore di Laplace. Il problema di stima è risolto attraverso l’uso di una
formulazione ad elementi finiti, che assicura elevata flessibilità e trattabilità com-
putazionale. Il modello è adatto per qualsivoglia tipo di dominio planare chiuso e
può essere generalizzato al caso non Euclideo. Si propone un approccio al cluster-
ing basato sul concetto di diffusione, insieme ad una procedura di test di ipotesi per
uno e due campioni basata su permutazione.
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1 Introduction

The problem of density estimation plays a central role in statistics. It is a funda-
mental tool for the visualization of structure in exploratory data analysis, and it may
be used as intermediate procedure in classification and custering problems. The last
decades have seen enormous amount of research focused on kernel density esti-
mation [10]. Simplicity of use and elegant analytic results are the key features of
the success of the kernel approach. However, bandwidth selection remains a cru-
cial problem for this method. Moreover, despite recent progress on the asymptotic
convergence of the errors, good finite sample performance is by no means guar-
anteed and many practical challenges remain. The problem get even worse in the
multidimensional setting, where the specification of a symmetric, positive definite
bandwith matrix is needed, although it’s common practice to use diagonal matrices.

Beside the class of kernel density estimators, many other smoothing methods for
density estimation have been proposed. All these estimators are based on the idea
of reducing the complexity of the problem with some type of approximations or
some form of constraint on the space of solutions. In the former case, the approx-
imation is given by basis expasion such as wavelets [4] or splines [9]. In the latter
case, the two most prominent approaches are based on regularization of the likeli-
hood functional [8] or shape constraints on the density, e.g. log-concavity [3]. The
latter is a parameter-free method but at the cost of a severe restriction on model
flexibility. Regularized likelihood methods are extremely flexible but because of the
computational complexity they never reached popularity.

In this work we present a new nonparametric likelihood approach to density es-
timation. The model is based on a finite element formulation and can deal with data
distributed over non-regular planar domains. We also briefly discuss a density based
clustering method and a permutation based procedure for goodness of fit and for
two-samples hypothesis testing.

2 Methodology

2.1 Classical approach

The problem of nonparametric maximum likelihood estimation, in the univariate
case, has been considered for the first time in [6]. Let X1, . . . ,Xn i.i.d. observations
with distribution function F and density f on a bounded domain Ω ∈ R. Without
further assumptions, the maximum likelihood estimator for f is not well defined.
The likelihood function is unbounded above and the maximization procedure returns
the trivial solution of sum of delta functions at the observations. Unlike classical
parametric likelihood estimation, where the parameter space is finite, the estimator
belongs to an infinite class of functions and some type of regularization becomes
necessary to obtain a non-degenerate solution. The basic approach is to maximize a
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score ω , depending on f and on the observations, defined by

ω = ω( f ) = L−αR( f ) , (1)

where L = ∑i log f (xi) is the log-likelihood, R( f ) is the roughness penalty, and the
parameter α > 0 controls the amount of smoothness. The authors consider, as mea-
sure of the roughness or complexity, the functional R( f ) = ||(

√
f )(1)||22, where the

square root permits to avoid the positive contraints on the density. Further develop-
ments of this model are presented in [8], where the author considers a regularization
functional of the form R( f ) = ||(log f )(3)||22. In this case the limiting estimate, as α

tends to infinity, is the normal density with the same mean and variance as the data.
Note that in this case the positive constraint is avoided by means of the logarithm
transformation. Although both models could be generalized to the multivariate set-
ting, consistency results and implementation are given only in the univariate case.

2.2 Model and estimation procedure

In this work we propose a generalization to the estimation of density defined over
bounded planar domains. Suppose we observe X1, . . . ,Xn i.i.d. observations drawn
from a distribution F on a bounded planar domain Ω ∈ R2. Instead of considering
the density f , let us define the log density g = log f , where g is a real function on
Ω . This transformation is particularly convenient from the theoretical as well as the
practical point of view.
We are interested in a penalized maximum likelihood estimation for g. As previously
stated, some types of regularization are necessary, in order to restrict the class of
possible solutions. More formally, we consider the estimator that is a solution of the
optimization problem

minimize −1
n

n

∑
i=1

g(Xi)+
∫

Ω

exp(g(x))dx+λR(g) (2)

subject to g ∈H 2(Ω) , (3)

where H 2(Ω) is Sobolev space of functions with continuous weak derivatives up to
the second order. As pointed out by [8], the second term of the functional ensures the
unitary contraint on the density. We consider here the penalization functional R( f )=∫

Ω
(∆ log f )2 dx, where ∆ is the Laplace operator. The Laplacian is a measure of

local curvature that is invariant with respect to Euclidean transformations of spatial
coordinates, and therefore ensures that the concept of smoothness does not depend
on the orientation of the coordinate system.
A more complex prior knowledge concerning the domain, which can be translated
into a partial differential operator, could be incorporated in the regularization term.
We shall consider linear second order elliptic operators of the form
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Lg =−div(K∇g)+b∇g+ c f (4)

The diffusion term −div(K∇g) induces a smoothing with a preferential direction
that corresponds to the first eigenvector of the diffusion tensor K. The degree of
anisotropy is controlled by the ratio between its first and second eigenvalue. The
transport term b∇g induces a smoothing only in the direction specified by the trans-
port vector b. Finally, the reaction term c f has instead a shrinkage effect towards a
uniform density on the domain.

Likewise in [7] and [1], the estimation problem is tackled by means of finite el-
ement method (FEM), a methodology mainly developed and used in engineering
applications, to solve partial differential equations. The strategy of finite element
analysis is very similar in spirit to that of univariate splines, and consists of parti-
tioning the problem domain into small disjoint sub-domains and defining polyno-
mial functions on each of these sub-domains in such a way that the union of these
pieces closely approximates the solution. Convenient domain partitions are given
for instance by triangular meshes. The simplified problem is made computationally
tractable by the choice of the basis functions for the space of piecewise polyno-
mials on the domain partition. Each piece of the partition, equipped with the basis
functions defined over it, is named a finite element.

Unlike kernel density estimation, the proposed approach admits a likelihood for-
mulation and it’s well defined on any domain Ω , without necessity for boundary cor-
rection. The absence of constraints on f allows the estimation of extremely complex
structures, a fundamental feature in research areas such as density based clustering.
Based on the proposed method, we shall in particular discuss a clustering proce-
dure stimulated by Morse theory [2]. We shall also introduce one and two-sample
nonparametric tests, based on a permutation approach.

3 Simulation study

Let us consider a complex domain, defined by the closed annulus ann(a;r,R) = {x∈
R2 : r≤ ||x−a|| ≤ R}, where a is the center and (r,R) the internal and external radii.
In our case we consider the annulus centered at the origin, with internal radius 3 and
external radius 5. The distribution we have defined on the annulus is the joint prob-
ability θ ∼ Unif(0,2π) and a truncated Gaussian distribution in the interval [1,1]
with zero mean and standard deviation σ = 0.3. The Gaussian defines a random
distance from the circle with center the origin and radius 4, in the direction normal
to the perimeter. This domain includes complex characteristics such as nonlinear
boundaries and holes. Despite the presence of complex domains in real data, none
of the standard methods in density estimation is appropriate for these problems.
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Fig. 1 On the left, an example of estimated density (top) and the distrubution of the MISE of
1000 simulation for different values of the smoothing parameters (bottom). On the right, the MSE
surface of 1000 simulation for the nonparametric likelihood (top) and the KDE estimator (bottom),
respectively.

4 Model extensions and conclusions

The proposed model performs well with respect to the state of the art of density
estimators, while reducing the number of parameters to be selected. The estimator
is also well defined on every bounded planar domain. The model can be generalized
to non-euclidean setting, e.g. manifolds [5], and a time dependency can be included.
These two features are extremely important in applications such as the study of brain
activity, where the distribution of the signals over an highly convoluted domain, the
cerebral cortex, changes over time. To the best of the authors knowledge, none of
the existing methods is appropriate for this type of problems. Clustering procedures
and two-samples testing based on the proposed estimator are also presented. Future
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works will consider convergence of the estimators, consistency in the multivariate
case and time-dependent generalizations.
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