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Abstract Principal component multinomial regression is a method for modelling 
the relationship between a set of high-dimensional regressors and a categorical 
response variable with more than two categories. This method uses as covariates of 
the multinomial model a reduced number of principal components of the regressors. 
Because the principal components are based on the eigenvectors of the empirical 
covariance matrix, they are very sensitive to anomalous observations. Several 
methods for robust principal component analysis have been proposed in literature. In 
this study we consider ROBPCA method. The new robust approach will be applied 
for assessing judges' performances.  

Abstract La regressione multinomiale sulle componenti principali è un metodo 
per modellare la relazione tra un set di regressori ad alta dimensionalità e una 
variabile di risposta nominale con più di due modalità. Questo metodo usa come 
covariate del modello multinomiale un numero ridotto di componenti principali 
estratte dai regressori. Poiché le componenti principali si basano sugli autovettori 
della matrice di covarianza empirica, sono molto sensibili alle osservazioni 
anomale. Diversi metodi robusti per l’analisi in componenti principali sono stati 
proposti in letteratura. In questo studio consideriamo il metodo ROBPCA. Il nuovo 
approccio robusto sarà applicato per valutare la performance dei giudici. 
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1. Introduction 

The court computerization of the last decades allows us to create available 
databases with complete information about the judicial flows. Here, we aim to focus 
on the causes of different judges' performances in the court of Naples.  

The dataset shows strongly correlated regressors, so the most proper statistic 
methodology to analyse this kind of data could be Principal component multinomial 
regression (Camminatiello, Lucadamo, 2010; Lucadamo, Leone, 2015). 

A previous research on Florence Court (Camminatiello, Lombardo, Durand, 
2017) highlighted the presence of outliers among judges. 

The aim of the paper is to study the dependence relationship between the judges' 
performances and some indicators of the judges' workload taking into account 
multicollinearity and outlier problems which make the estimation of the multinomial 
model parameters inaccurate because of the need to invert nearsingular and ill-
conditioned information matrices. 

A robust method for logistic regression (Rousseeuw, Christmann, 2003) and 
robust logistic ridge regression (Ariffin, Midi, 2014) have been proposed in 
literature, we propose a robust approach for the principal component multinomial 
regression (PCMR). 

We proceed in the following way. In the second section we describe the PCMR. 
In the third section we list the most important robust methods for estimating the 
variance/covariance matrix and propose a robust approach to PCMR. In the fourth 
section we apply our robust approach for evaluating the judges' efficiency and 
calculate the correct classification rate for comparing three different models. 

2. From multinomial logit regression to robust methods for 
principal component multinomial regression.  

Multinomial logit model (MNL) is the simplest model in discrete choice analysis 
when more than two alternatives are in a choice set. The model becomes unstable 
when there is multicollinearity among predictors (Ryan, 1997). To improve the 
estimation of the MNL parameters, Camminatiello and Lucadamo (2010) proposed 
the PCMR.  

PCMR uses as covariates of the multinomial model a reduced number of 
principal components (PCs) of the regressors. Because these components are based 
on the eigenvectors of the empirical covariance matrix, they are very sensitive to 
anomalous observations. Several methods for robustifying principal component 
analysis (PCA) have been proposed in literature.  

If the number of observations is sufficiently large with respect to the number of 
variables, the classical covariance matrix can be replaced by minimum covariance 
determinant (MCD) estimator, minimum volume ellipsoid (MVE) estimator 
(Rousseeuw and Leroy 1987), S-estimators (Davies 1987), reweighted MCD 
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(Rousseeuw and van Zomeren, 1990), FAST-MCD (Rousseeuw and Van Driessen, 
1999).  

For high-dimensional data, a ROBust method for PCA, called ROBPCA, has 
recently been developed (Hubert, Rousseeuw and Vanden Branden, 2012). 
ROBPCA starts by reducing the data space to the affine subspace spanned by n 
observations. A convenient way to perform it is by a singular value decomposition 
of the mean-centred data matrix. In the second stage  “least outlying” data 
points are found by Stahel-Donoho affine invariant outlyingness. In the third stage, 
the algorithm robustly estimates the location and scatter matrix of the data points 
projected into a subspace of small to moderate dimension by using the FAST-MCD 
estimator. ROBPCA ends by yielding the robust principal components. Like 
classical PCA, the ROBPCA method is location and orthogonal equivariant.  

2.1. Robust Principal Component Multinomial Regression - 
RobPCMR 

Several authors applied ROBPCA to formulate other robust techniques (Hubert, 
Vanden Branden, 2003; Hubert, Verboven, 2003; Rousseeuw, Christmann, 2003). 
We investigate using ROBPCA before PCMR to deal with multicollinearity and 
outlier problems in MNL. We proceed in the following way.  

Let , … , , … ,  be a set of p quantitative regressors and  a categorical 
response variable with more than two categories observed on n statistical units.  

At first step, robust principal component multinomial regression (RobPCMR) 
creates the robust PCs of the regressors , … , , … ,  which are linear 
combinations of the original variables . At second step the multinomial 
model is carried out on the set of robust PCs. At third step, the number of robust 
PCs, a , to be retained in the model, is selected according to different tools 
(Camminatiello and Lucadamo, 2010). 

At fourth step, the multinomial model is carried out on the subset of robust PCs 
chosen. The probability, for the individual i, to choose the alternative c can be 
expressed in terms of a robust PCs as: 

 

π c
∑ ∑

∑ ∑ ∑

∑

∑ ∑
   (1) 

 

where γ ∑ v β  are the robust coefficients to be estimated on the 

subset of a robust PCs and β  are the robust PCMR parameters obtained after the 
extraction of the a components.  

Finally, the robust MNL parameters can be expressed in function of original 
variables (X matrix) 
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       (2) 
 
where  is the matrix of robust parameters expressed in function 

of original variables;  is the matrix of robust PCs;  is the matrix of robust 
parameters on a robust PCs for the s alternatives;  is the matrix of robust 
eigenvectors. 
To measure the performance of a method, several criteria can be utilised 
(Camminatiello, Lombardo, Durand, 2017; Camminatiello, Lucadamo, 2010). Here, 
we focus on rate of well classified which we expect higher compared to PCMR and 
MNL.  

3. A robust model to predict judges' performances. 

Our study concerns the causes of different judges' performances in the court of 
Naples. The performance evaluation is based, among others, on the time that each 
judge employs to solve the disputes. According to many available publications about 
similar problems (Camminatiello, Lombardo, Durand, 2017), we aim to study if 
number of: pendings, hearings, dossiers, incoming and defined proceedings can 
influence the judges' performances. The response variable is on categorical scale, 
with four modalities from 1 (Low) to 4 (High), measured for 136 judges.  

To evaluate how judges' performances can be influenced by explicative 
variables, we divide our sample in two sub-samples. The first one, composed by the 
70% of the observations, is the sample used to estimate the model parameters 
(estimation sample). The second one (validation sample) is considered to test the 
goodness of the obtained estimates. In both the cases we calculate the rate of well 
classified judges and we compare the results obtained by applying the MNL, the 
PCMR and the RobPCMR.  
In table 1 the results obtained by the three methods on the estimation sample are 
shown. From the second to the fifth column we have the percentage of well 
classified, calculated for four different models: the MNL estimated on all the 
regressors and on the two significant ones (via stepwise regression); the PCMR run 
on the first PC (which accounts for 93.4% of the variance, has the eigenvalue higher 
than one and furthermore is the only significant regressor); the RobPCMR carried 
out on the first robust PC (which accounts for 89.8 % of the variance, has the 
eigenvalue higher than one and is the only significant regressor). 

It is easy to observe that for the estimation sample the classical MNL performs 
better than other models: it could be due to an over-fitting problem. 

 
Table 1: Percentage of correct classified calculated for four different models on the estimation 
sample 

 MNL (all) MNL (sign) PCMR (1) RobPCMR (1) 
% correct classified 70.1% 63.9% 59.8% 58.8% 
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To verify the goodness of the techniques it is then necessary to consider the 
results on the validation sample (table 2).  

In this case it is evident that for all the methods, but for the RobPCMR, the 
percentages are lower than before.  
 
Table 2: Percentage of correct classified calculated for four different models on the validation 
sample 

 MNL (all) MNL (sign) PCMR (1) RobPCMR (1) 
% correct classified 53.8% 56.4% 53.8% 59.0% 
 

In fact, looking at the table 2, we can notice that the MNL, considering all the 
variables, leads to the same classification rate obtained by the PCMR with only one 
component, while for the MNL, taking into account only the two significant 
variables, the percentage of well classified increases. It is surprising that RobPCMR 
result shows a rate of correct classification higher than before (59.0% against 
58.8%). This may indicate the ability of the method in parameter estimation.  

It is also interesting to notice what happens when we consider more components 
in the analysis, both for PCMR and for RobPCMR.  

For this reason we show in table 3 and 4 the results obtained when we consider a 
different number of components as explicative variables.  

 
Table 3: Percentage of correct classified, at varying the number of components, for the 
estimation sample 

Number of components PCMR RobPCMR  

1 59.8% 58.8% 

2 60.8% 60.8% 

3 60.8% 63.9% 
4 61.9% 63.9% 
5 70.1% 62.9% 

 
For the PCMR, the results on the estimation sample show that, when the number 

of components increases, the classification improves. Considering all the 
components the result is equal to that obtained using all the variables in the classical 
MNL (Camminatiello and Lucadamo, 2010). 

For RobPCMR instead, there is an improving in the correct classification rate at 
beginning, but when we consider all the components, the result is lower than one 
obtained with 3 and 4 components.  

If we consider the validation sample the results confirm both for the PCMR and 
for the RobPCMR that the selection of the significant components (in this case 
explaining the most part of the variability too) is an useful solution to obtain a good 
rate of correct classification.  
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Table 4: Percentage of correct classified, at varying the number of components, for the 
validation sample 

Number of components PCMR RobPCMR  

1 53.8% 59.0% 

2 53.8% 59.0% 

3 51.3% 56.4% 
4 48.7% 58.9% 
5 51.3% 56.4% 

 
Obviously for RobPCMR, as already done in previous studies for PCMR, a 

complete simulation study is necessary to generalize the results.  

4. Conclusion and perspective 

In this paper we carried out a robust model for evaluating the judges performances 
in presence of outliers and strongly correlated covariates. .To solve these problems, 
we proposed to use as covariates of the multinomial model a reduced number of 
robust PCs of the predictor variables.  
The application showed that the proposed approach is a valid alternative on real 
data. However, an extensive simulation study is needed in order to verify that it is 
resistant towards many types of contamination, to compare the results with other 
robust approaches for PCA proposed in literature and to select optimal dimension of 
the model. The procedure should lead to lower variance estimates of model 
parameters comparing to PCMR. The variance can be estimated by bootstrap 
resampling. 
Finally, an extension to MNL of the approaches proposed in literature, for dealing 
with multicollinear and outlier problems in the logit model (Ariffin, Midi, 2014) 
could be interesting as well as an extension to ordinal logit regression of the 
approach here proposed. 
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