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Abstract Bayesian posterior predictive assessment has received considerable 
attention for investigating specific aspects of fit of item response theory models. In 
fact, this approach is easy to apply within Markov chain Monte Carlo estimation, it is 
flexible and free from distributional assumptions. In its classical implementation, the 
method is based on graphical analysis and the estimation of posterior predictive p-
values to investigate the degree to which observed data are expected under the model, 
given a discrepancy measure. In this work, we propose to quantify the distance 
between the realized and the predictive distributions of the discrepancy measure based 
on the Hellinger distance. The results show that this measure is able to provide clear 
recommendations about the investigated aspects of model fit. 
Abstract Lo studio di aspetti specifici dell’adattamento dei modelli di item response 
theory è stato affrontato di recente con successo in ambito bayesiano usando 
strumenti della valutazione predittiva a posteriori. Questo approccio infatti è di facile 
applicazione quando si utilizza il metodo Markov chain Monte Carlo, è flessibile e 
non dipende da assunzioni distributive. Nella sua implementazione classica, il metodo 
si basa sull’analisi grafica e sulla stima dei p-value predittivi a posteriori basati su 
una particolare misura di discrepanza. In questo lavoro, si propone di quantificare 
la distanza tra la distribuzione realizzata e quella predittiva della misura di 
discrepanza utilizzando la distanza di Hellinger. I risultati mostrano che questa 
misura di distanza è in grado di fornire indicazioni chiare circa i particolari aspetti 
dell’adattamento considerati. 
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1 Introduction 

In educational and psychological measurement, item response theory (IRT) models 
(see, e.g., van der Linden and Hambleton, 1997) are commonly used to estimate the 
characteristics of both the categorical items and the test takers. Several IRT 
unidimensional and multidimensional models have been proposed to account for 
different data structures. While unidimensional models assume the presence of a 
single latent variable underlying the response process, the multidimensional ones 
allow for multiple abilities. In this setting, the issue of model goodness-of-fit is crucial 
to investigate both absolute and relative fit. 

Due to the increasing model complexity, a considerable amount of literature has 
been recently focused on Bayesian estimation of IRT models via Markov chain Monte 
Carlo (MCMC) methods due to its flexibility. Starting from a MCMC output, one 
possibility for examining model fit is using Bayesian posterior predictive model 
checks (PPMC; Rubin, 1984). Considerable advantages of the method are that it does 
not rely on distributional assumptions, and it is relatively easy to implement, given 
that the entire posterior distribution of all parameters of interest is obtained through 
MCMC algorithms.  

The first proposals on the use of PPMC for IRT models deal with differential item 
functioning, person fit, fit of unidimensional models and item fit (see, e.g., Sinharay, 
2006). Later, there was an increasing interest in checking specifically for the behavior 
of unidimensional models fitted to potential multidimensional data (see, among 
others, Sinharay, Johnson, and Stern, 2006; Levy, Mislevy, and Sinharay, 2009; Levy 
and Svetina, 2011). In these studies, PPMC has been implemented with graphical 
analyses and the estimation of the posterior predictive p-values (PPP-values) to 
investigate the degree to which observed data are expected under the model, given a 
discrepancy measure. Moreover, Wu, Yuen, and Leung (2014) proposed the use of 
relative entropy (RE) within PPMC to quantify the information the realized 
distribution loses when it is approximated by the predictive distribution. 

The aim of this study is to propose the Hellinger distance, based on the Hellinger 
integral (Hellinger, 1909), to measure the distance between the realized and the 
predictive distributions. Unlike the relative entropy, the Hellinger distance is 
symmetric, it does obey the triangle inequality and it goes from zero to one. The use 
of the Hellinger distance is investigated for detecting the misfit of an IRT 
unidimensional model when response data are multidimensional with both simulated 
and real data. 
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2 Posterior Predictive Assessment of IRT Models 

PPMC techniques are based on the comparison of observed data with replicated data 
generated or predicted by the model by using a number of diagnostic measures that 
are sensitive to model misfit (Sinharay, Johnson, and Stern, 2006). Substantial 
differences between the posterior distribution based on observed data and the posterior 
predictive distribution indicate poor model fit.  

Given the data y, let p(y|ω) and p(ω) be the likelihood for a model depending on 
the set of parameters ω and the prior distribution for the parameters, respectively. In 
the IRT context, ω consists of the item parameters, person parameters, and trait 
correlations. To examine the differences between the observed and the replicated data, 
the latter are drawn from the posterior predictive distribution (PPD) of replicated data 
yrep  

 
                                𝑝(𝒚$%&|𝒚) = ∫ 𝑝(𝒚$%&|𝝎)𝑝(𝝎|𝑦)𝜕𝝎.𝝎       (1) 

 
From a practical point of view, one should define a suitable discrepancy measure 

D(·) and compare the posterior distribution of D(y,ω), based on observed data, to the 
posterior predictive distribution of D(yrep,ω). Discrepancy measures should be chosen 
to capture relevant features of the data and differences among data and the model. As 
a first step in PPMC, a graphical analysis is conducted to investigate the differences 
among realized and replicated discrepancy measures. Then, the PPP-value is defined 
as  

 
                               PPP-value = 𝑝6𝐷(𝒚$%&,𝝎) ≥ 𝐷(𝒚,𝝎|𝒚):.                      (2) 
 
The PPP-value is estimated by computing the proportion of MCMC replications 

which satisfy Equation (2). The PPP-values provide a measure of the degree to which 
observed data would be expected under the model: values close to 0 or 1 mean that 
the realized values fall far in the tails of the distribution of the discrepancy measure 
based on PPD, indicating misfit; conversely, values of approximately 0.5 mean that 
the realized values fall in the middle of the distribution, indicating good fit. As 
underlined by Levy, Mislevy, and Sinharay (2009), PPMC has several advantages 
over traditional techniques. The method  is easy to apply and flexible because the 
reference distribution is built empirically and it does not require regularity conditions 
or asymptotic results. Moreover, PPMC relies on Bayesian estimation, which is based 
on the full posterior distribution: compared with maximum likelihood techniques, 
which are based on a point estimate, the method is able to directly incorporate 
uncertainty into the estimation. However, using PPMC is not equivalent to conducting 
a classical hypothesis test, and the method should be treated as a diagnostic tool 
(Gelman, Meng, and Stern, 1996; Sinharay, Johnson, and Stern, 2006). 

The choice of a suitable discrepancy measure is crucial in PPMC. Effective 
diagnostic measures in checking for unidimensionality or multidimensionality are 
based on the association or on covariance/correlation among item pairs. In the first 
group, the Mantel-Haenszel (MH) statistic is based on the odds ratio conditionally to 
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the rest score s, i.e., the raw test score obtained by excluding the two items. For each 
couple of items j and j’, with j, j’=1,…,k, the MH statistic is defined as  

 
                                              MH==> =

∑ @AAB@CCB/@BB
∑ @ACB@CAB/@BB

,                                        (3) 
 

where ntt′s is the number of subjects with rest score s who score t on item j and t′ on 
item j′, with t, t′=0,1, and ns is the number of subjects with rest score s. In the second 
group, the model-based covariance (MBC) is defined as follows 
 
                                               MBC==> =

∑ (GHIJK6GHI:)(GHILJK6GHIL:)M
HNA

@
,                                    (4) 

 
 

where Yij is the response variable for individual i to item j, with i=1,…,n and j=1,…,k, 
and E(Yij) is its expected value depending on the specific IRT model and the estimated 
parameters.  

2.1 The Hellinger Distance for PPMC 

While the PPP-value counts the number of replications for which the predictive 
discrepancy exceeds the realized one, the researcher may be interested in measuring 
the size of the difference itself. For this reason, Wu, Yuen, and Leung (2014)  
proposed the use of the relative entropy (RE), also known as Kullback-Leibler 
divergence or information, to evaluate the magnitude of the differences between the 
realized and the predictive measures with limited information statistics based on low-
order margins. However, the RE is asymmetric and it is not upper bounded so it is 
difficult to establish proper threshold levels for assessing absolute model fit or making 
comparisons. 

To overcome these limitations, we propose the use of the Hellinger distance which 
is symmetric, it does obey the triangle inequality and its range is 0-1. Since the 
Hellinger distance is used to quantify the distance between two probability measures, 
it can be used to measure the distance between the realized and the predictive 
distribution within PPMC as follows 

   

              	H(𝑃,𝑄) = R1 − ∫U𝑝6𝐷(𝒚,𝝎):𝑝(𝐷(𝒚$%&,𝝎))𝑑𝒚𝑑𝝎.                         (5) 

                                                                                                           
The direct calculation of  (5) is computationally demanding and it is usually done 

via MCMC. Specifically, it is calculated by using the normal kernel density estimates 
to represent the probability density functions of the realized and the predictive 
discrepancy measures, given the MCMC replications. In order to check for model 
unidimensionality, we propose the use of the Hellinger distance with the MBC 
discrepancy measure, which is based on both data and model parameters, to take into 
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account a fit measure for each item pair. A MATLAB code was written by the Authors 
to implement the proposal. 

3 Main Results 

A simulation study is conducted to investigate the performance of the PPP-values and 
the Hellinger distance at detecting the misfit of a unidimensional IRT model when the 
data structure is multidimensional. Two different multidimensional IRT models are 
considered, namely the multi-unidimensional and additive models (see Sheng and 
Wikle, 2009). Within a confirmatory approach, the multi-unidimensional model 
relates each item response to a single latent variable, by allowing for trait correlations. 
In the additive model, a further overall latent trait is assumed underlying all item 
responses. All traits may be correlated as well. The corresponding IRT unidimensional 
model is built under the assumption of unidimensionality. 

In the study, response data for tests with 10 items and 1,000 respondents are 
simulated. The trait correlations are manipulated. A number of 5,000 MCMC 
iterations are conducted, where 1,000 are used for PPMC. Finally, 100 replications 
are done for each simulation condition. The MH statistic and the MBC are used as 
discrepancy measures, with 45 item pairs to be considered. Given the mean of the 
PPP-values for each item pair over the replications, the proportion of extreme PPP-
values (below 0.05 or above 0.95) is estimated pooling the results on all item pairs. 
Given the mean of the Hellinger distance for the MBC (MBC-H) for each item pair, 
some summary descriptive measures are computed by pooling the results on all item 
pairs. 

Data are generated from the multidimensional models with a bidimensional 
structure and then analysed with the unidimensional approach. Due to space limit, the 
results are not reported in the paper but only briefly discussed in the following. The 
results on the PPP-values show that, for both discrepancy measures, the proportion of 
extreme values is above 0.75 for most conditions suggesting bad fit. In particular, the 
MH statistic outperforms the MBC. In the cases of strong and very strong trait 
correlations, data are conceived as unidimensional and, consequently, the proportion 
of extreme PPP-values decreases. The average MBC-H is estimated above 0.8 for 
most cases showing bad fit. The results are coherent and easily interpretable, in fact, 
the more the MBC-H is close to one, the bad the fit is. For strongly correlated traits, 
the MBC-H is estimated on average around 0.65. This means that the data are 
conceived as unidimensional but the distance measure is still able to catch the 
discrepancy between the generating model and the one used to analyse response data. 

Data coming from a survey conducted by the University of Bologna (Bernini, 
Matteucci, and Mignani, 2015) to investigate the residents’ perceptions toward 
tourism in terms of perceived benefits and costs are used. A total of 5 items on benefits 
and 5 items on costs are administered, suggesting a bidimensional latent structure. 
The unidimensional, multi-unidimensional and additive models are fitted. The results 
on the PPP-values show that the unidimensional approach is associated to a proportion 
of about 80% of extreme values. On the contrary, about 30% and 16% of extreme 
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PPP-values are reported for the multi-unidimensional and the additive model, 
respectively. Clearly, the additive model shows the best fit. These results are 
confirmed by the analysis with the MBC-H. On average, the estimated distances are 
about 0.8, 0.5, and 0.4 for the unidimensional, multi-unidimensional and additive 
model, respectively. 

The approach based on the Hellinger distance seems to be promising to evaluate 
model fit within posterior predictive assessment. In particular, all measures could be 
used to investigate misfit due to specific items. A more comprehensive simulation 
study is needed to check the performance of the method for different simulation 
conditions.  
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