Tail analysis of a distribution by means of an
inequality curve

Analisi della coda di una distribuzione attraverso una
curva di concentrazione
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Abstract The Zenga (1984) inequality curve A (p) is constant in p for Type I Pareto
distributions. We show that this property holds exactly only for the Pareto distribu-
tion and, asymptotically, for distributions with power tail with index ¢, with o > 1.
Exploiting these properties one can develop powerful tools to analyze and estimate
the tail of a distribution. An estimator for ¢ is discussed. Inference is based on an
estimator of A (p) which utilizes all sample information for all values of p. The prop-
erties of the proposed estimation strategy is analyzed theoretically and by means of
simulations.

Abstract La curva di concentrazione A(p) di Zenga (1984) é costante in p per le
distribuzioni di Pareto di tipo I. Questa proprieta vale esattamente solo per la dis-
tribuzione di Pareto e, asintoticamente, per le distribuzioni con indice di coda —a.,
con o0 > 1. Sfruttando queste proprieta si possono sviluppare metodi molto efficaci
per analizzare e stimare la coda di una distribuzione. Si discute uno stimatore per
o. L’inferenza si basa su uno stimatore di A (p). Le proprieta della strategia di stima
proposta sono analizzate teoricamente e mediante simulazioni
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1 Introduction

Consider an iid random sample X;,X5,...,X, drawn from a random variable with
distribution function F satisfying

F(x)=x%L(x), ey

where F = 1—F, and L(x) is a slowly varying function, that is L(tx)/L(x) — 1 as
x — oo, for any t > 0. We will say that F is regularly varying (RV) at infinity with
index —a, denoted as F' € RV_,. The parameter o > 0 is usually referred to as tail
index; alternatively, in the extreme value (EV) literature it is typical to refer to the
EV index ¥ > 0 with @ = 1/y (see e.g. [10]).

The paper proposes an estimator of the tail index o which relies on Zenga in-
equality curve A(p), p € (0,1) [12]. The curve A(p) has the property of being con-
stant for Type I Pareto distributions and, as it will be shown, this property holds
for distributions satisfying (1). See [1], [12] , [13] for a general introduction and
analysis of A(p) .

Probably the most well-known estimator of the tail index is the Hill [6] estimator,
which exploits the k upper order statistics. The Hill estimator may suffer from high
bias and is heavily dependent on the choice of k (see e.g. [2]). It has been thoroughly
studied and several generalization have appeared in the literature. For recent review
of estimation procedures for the tail index of a distribution see [3].

The approach to estimation proposed here, directly connected to the inequality
curve A(p) has a nice graphical interpretation and could be used to develop graphi-
cal tools for tail analysis. Another graph-based method is to be found in [9], which
exploits properties of the QQ-plot; while a recent approach based on the asymptotic
properties of the partition function, a moment statistic generally employed in the
analysis of multi-fractality, has been introduced by [5]; see also [8] which analyzes
the real part of the characteristic function at the origin.

2 The curve A(p) and estimation strategy

Let X be a positive random variable with finite mean p, distribution function F', and
probability density f. The inequality curve A(p) is defined as:

log(1-p)

where F~!(p) = inf{x: F(x) > p} is the generalized inverse of F and Q(x) =
Jotf(t)dt/u is the first incomplete moment. Q can be defined as a function of p
via the Lorenz curve

L(p) = 0(F "\ (p)) = ﬁ [ iwa. 3)
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For a Type I Pareto distribution [7, 573 ff.] with
F(x)=1-(x/x0)"% xZ=xo €5

itholds that A(p) = 1/a, i.e. A(p) is constant in p. This is actually an if-and-only-if
result, as we formalize in the following lemma:

Lemma 1. The curve A(p) defined in (2) is constant in p if, and only if, F satis-
fies (4).

The following result can also be stated, asymptotically for the case where F satisfies
(1) as it is stated in the next lemma. For this purpose write

log(1-Q(x))
log(1—F(x))’

Lemma 2. [ F satisfies (1), then lim; . A(x) = 1/c.

Alx)=1 5)

A tail property of Pareto type I distribution is worth of being noted. Let X be
a random variable distributed according to (4) — that is, X ~ Pareto(a,xp) —, the
following property holds for any x; > xp > xo:

—o
PIX > x|X > x] = (f) ,
2

hence, the truncated random variable (X |X > x;) is distributed as Pareto( ¢, x).

The implications of this property are twofold. Firstly, the truncated random vari-
able is still distributed according to (4), thus Lemma 1 still applies. Secondly, the tail
index « is the same both for original and for truncated random variable, thus func-
tion A(p) can be used for the estimation of & regardless of the truncation thresh-
old X2.

The same property we have just outlined holds asymptotically for distribution
functions satisfying (1). .

Figure 1 reports the empirical curve A (p) as a function of p for a Pareto distribu-
tion defined by (4) with ¢ = 2 and xy = 1, denoted with Pareto(2, 1) and a Fréchet
distribution with F(x) = exp (—x~ %) for x > 0 and a = 2, denoted by Fréchet(2) at
different truncation thresholds. Note the remarkably regular behavior or the curves
and the closeness to the theoretical form for the Fréchet case already for low levels
of truncation.

In this paper the above properties are exploited for devising an estimation
method of the tail index o for distributions of class (1).

Let X(1,...,X(,) be the order statistics of the sample, I, the indicator function

of the event A. To estimate A (p), define the preliminary estimates

Y Xillx, <)
Fu(x) = Tix,<x 0n(x)=——Gir—— (6)
(X;<x) Zi:lXi

S| =
™
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Fig. 1 Plot of p) (p) and p for Pareto(2, 1) (solid line) and Fréchet(2) (dashed line) at various levels
of truncation. Sample size n = 500. Horizontal line at 1 /ot = 0.5

Under the Glivenko-Cantelli theorem (see e.g. [11]) it holds that F;,(x) — F(x) al-
most surely and uniformly in 0 < x < co; under the assumption that E(X) < oo, it
holds that Q,(x) — Q(x) almost surely and uniformly in 0 < x < e. F;, and Q,, are
both step functions with jumps at X(y),...,X(,). The jumps of F, are of size 1 /n
while the jumps of O, are of size X;) /T where T = }I_; X;). Define the empirical
counterpart of L as follows:

La(p) = Qu(F; ' (p)) = %Xm

. o
Lep<c™ isin, a1,
n n

where F, ! (p) = inf{x : F,(x) > p}. To estimate « define
A log(1 —L,(p; ]
do—1_ ol —Lulpi) T i=1,2,..n—|vn]. (8)
tog(1— py) n

and let @ = 1/ where A is the mean of the A;’s. The choice of i = 1,...,n— [ /n]
guarantees that A; is consistent for A; for each p; =i/n as n — co.

3 Simulations

To evaluate the performance of &, some numerical comparisons are carried out with
respect to some reduced bias competitors optimized with respect to the choice of
k, the number of largest order statistics used in estimation, as discussed in [4]. The
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class of moment of order p estimators [4], which reduce to the Hill estimator when
p = 0 is considered; in the tables they are indicated as Mop(p).

As far as the estimator & is concerned, different levels of truncation of the data
are considered. In the tables Ze(g) indicates the estimator & with g indicating the
fraction of upper order statistics used in estimation.

For the comparisons, the Pareto and the Fréchet distributions, as defined in the
previous section, are used. Random numbers for the Pareto distribution are simply
generated in R using the function runif () and inversion of F; random numbers
from the Fréchet are simulated using the function rfrechet () from the library
evd with shape parameter set equal to o.

Tables 1 and 2 contain the results of simulations. For each sample size n =
100,200, 500, 1000, 2000, M = 1000 Monte-Carlo replicates were generated. Com-
putations have been carried out with R version 3.3.1 and each experiment, i.e. given
a chosen distribution and a chosen n, has been initialized using set . seed (1).

n Hill Mop(0.5) Mop(1) Ze(1) Ze(0.7) Ze(0.5) Ze(0.3)
100 3.41 1.01 1.02 6.44 5.93 546  4.68
200 3.97 1.01 1.02 8.67 8.11 7.38 6.53
500 1.99 1.00 0.99 533 4.84 458 4.07

1000 2.75 1.00 1.00 8.31 7.64  7.11 6.49
2000 1.10 1.00 0.99 3.67 3.48 3.18 2.84

Table 1 Hill estimator: RMSE. Other estimators: relative RMSE wrt to the Hill estimator.
Pareto(2, 1) distribution. Results based on 1000 replications.

n Hill Mop(0.5) Mop(1) Ze(1) Ze(0.7) Ze(0.5) Ze(0.3)
100 0.72 0.99 097 1.19 1.41 1.34 1.11
200 0.62 0.99 096 1.01 1.26 1.29 1.13
500 0.50 0.98 0.94 0.81 1.07 1.15 1.09

1000 0.44 1.00 093 0.71 0.93 1.06 1.06
2000 0.37 1.00 091 0.61 0.82 094 1.00

Table 2 Hill estimator: RMSE. Other estimators: relative RMSE wrt to the Hill estimator.
Fréchet(2) distribution. Results based on 1000 replications.

From the tables one can note that the performance of & is brilliant for the Pareto
and slightly better of Mop estimators for the Fréchet. Truncation seems to have only
a small effect on the performance of the estimator.
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