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Abstract We use on-field variables from football matches in the German Bundesliga
and connect them to the sportive success or failure of the single teams in a paired
comparison model where each match in a Bundesliga season is treated as a paired
comparison between the two competing teams. We propose an extended paired com-
parison model that extends the classical Bradley-Terry model to ordinal response
variables and includes different types of covariates. We apply penalized likelihood
estimation and use specific L1 penalty terms for fusion and selection in order to re-
duce the complexity of the model and to find clusters of teams with equal covariate
effects. The proposed model is a very general one and can easily be applied to other
sports data or to data from different research fields. We apply the model to data from
the latest season of the German Bundesliga.
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1 Introduction

In modern football, various variables as, for example, the distance a team runs or
its percentage of ball possession, are collected throughout a match. However, there
is a lack of methods to make use of these on-field variables simultaneously and to
connect them with the final result of the match. We propose to treat each football
match as a paired comparison between the two competing teams and to analyse the
results of football data by an extended paired comparison model.
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Paired comparisons occur if two objects out of a set of objects are compared
with respect to an underlying latent trait. In the case of football matches in national
leagues all teams from the respective league are considered to be these objects.
Football matches can be treated as paired comparisons between two teams where the
playing abilities of the teams represent the underlying latent traits that are compared.

Our main goal is to set up a paired comparison model that is able to incorporate
so-called on-field variables as covariates. In general, if covariates are to be consid-
ered in paired comparison, one has to distinguish between subjects and objects of
the paired comparisons. A covariate can either vary across the subjects or the ob-
jects of a paired comparison, or, as in our case, both over subjects and objects. In
football matches, the teams are the objects while a single match can be considered
to be the subject that conducts the comparison between the two objects/teams. If
one considers a variable like the percentage of ball possession a team has in a spe-
cific match, this variable varies both from team to team and from match to match.
Therefore, in our application subject-object-specific covariates are considered. Af-
ter all, the proposed model could in principle consider all three types of variables
simultaneously.

The Bradley-Terry model (Bradley and Terry, 1952) is the standard model for
paired comparison data. Assuming a set of objects {a1, . . . ,am}, in its most simple
form the Bradley-Terry model is given by

P(ar � as) = P(Y(r,s) = 1) =
exp(γr− γs)

1+ exp(γr− γs)
. (1)

One models the probability that a certain object ar dominates or is preferred over
another object as, ar � as. The random variable Y(r,s) is defined to be Y(r,s) = 1 if ar
dominates as and Y(r,s) = 0 otherwise. The parameters γr represent the attractiveness
or strength of the respective objects. In football matches, the random variable Y(r,s)
which represents the paired comparison between ar and as needs to have at least
K = 3 possible categories instead of two because in football one needs to account
for the possibility of draws. However, if one distinguishes, for example, clear wins
and losses from wins and losses with only one goal difference one could also use
K = 5 categories. In general, for the case of ordered responses Y(r,s) ∈ {1, . . . ,K} the
model is extended accordingly to

P(Y(r,s) ≤ k) =
exp(θk + γr− γs)

1+ exp(θk + γr− γs)
, k = 1, . . . ,K , (2)

which essentially corresponds to the generalization from a binary logistic regression
model to a cumulative logistic regression model. In our application, the strength
parameters γr represent the playing abilities of the teams.

In general, for the ordinal paired comparison model (2) it is assumed that the
response categories have a symmetric interpretation so that P(Y(r,s) = k) = P(Y(s,r) =
K− k+ 1) holds. Therefore, the threshold parameters should be restricted by θk =
−θK−k and, if K is even, θK/2 = 0 to guarantee for symmetric probabilities. The
threshold for the last category is fixed to θK = ∞ so that P(Y(r,s) ≤ K) = 1 will hold.
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The probability for a single response category can be derived from the difference
between two adjacent categories, P(Y(r,s) = k) = P(Y(r,s) ≤ k)−P(Y(r,s) ≤ k− 1).
To guarantee for non-negative probabilities of the single response categories one
restricts θ1 ≤ θ2 ≤ . . .≤ θK .

When football matches are considered as paired comparisons one has to consider
that so-called order effects are possible. To some extent, order effects contradict the
assumption of symmetric response categories which was described above. When
order effects are present, the order of the two objects (i.e. which object is the first-
named object and which is the second-named object) is not random and possibly
has an influence on the outcome. In football (especially in national leagues) this is
obviously the case as the first-named object is the home team and, hence, usually
has a home advantage over the (second-named) away team. To include such an order
effect in model (2) we extend the model to

P(Y(r,s) ≤ k) =
exp(δ +θk + γr− γs)

1+ exp(δ +θk + γr− γs)
, k = 1, . . . ,5 , (3)

where δ represents an order effect. In football matches, this parameter represents
the home effect (or home advantage if positive). It is possible to assume a global
home effect δ which is equal for all teams or team-specific home effects δr.

2 Bundesliga Data

The main goal of this work is to analyze if (and which) on-field variables that are
collected throughout a match are associated to the final result of football matches.
In total, our data set contains all the following variables separately for each team
and each match:

Distance Total amount of km run
BallPossession Percentage of ball possession
TacklingRate Rate of tacklings won
ShotsonGoal Total number of shots on goal
Passes Total number of passes
CompletionRate Percentage of passes reaching teammates
FoulsSuffered Number of fouls suffered
Offside Number of offsides (in attack)

The data were collected from the website of the German football magazin kicker
(http://www.kicker.de/). Exemplarily, Table 1 shows the collected data for the open-
ing match of the season 2016/17 between Bayern München and Hamburger SV.
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Bayern München Hamburger SV
Goals 5 : 0 Goals

Shots on goal 23 : 5 Shots on goal

Distance 108.54 : 111.28 Distance

Completion rate 90 : 64 Completion rate

Ball possession 77 : 23 Ball possession

Tackling rate 52 : 48 Tackling rate

Fouls 10 : 12 Fouls

Offside 3 : 0 Offside

Table 1 Illustrating table for original data situation showing data for the opening match in season
2016/17 between Bayern München and Hamburger SV. Source: http://www.kicker.de/

3 A Paired Comparison Model for Football Matches Including
On-field Variables

When using a paired comparison model for football matches the standard Bradley-
Terry model needs to be extended in several ways. In model (3) we already extended
the Bradley-Terry model to handle both an ordinal response (in particular draws) and
home effects. Now the model is further extended to incorporate on-field variables,
which in the context of paired comparisons are considered as subject-object-specific
variables. We propose to use the general model for ordinal response data Yi(r,s) ∈
{1, . . . ,K} denoted by

P(Yi(r,s) ≤ k) =
exp(δr +θk + γir− γis)

1+ exp(δr +θk + γir− γis)

=
exp(δr +θk +βr0−βs0 + zT

irαr− zT
isαs)

1+ exp(δr +θk +βr0−βs0 + zT
irαr− zT

isαs)
. (4)

The model allows for the inclusion of so-called subject-object-specific covariates zir.
It belongs to the general model family proposed by Schauberger and Tutz (2017a)
for the inclusion of different types of covariates in paired comparison models.
Within this framework, Tutz and Schauberger (2015) present a model including
object-specific covariates zr and Schauberger and Tutz (2017b) present a model in-
cluding subject-specific covariates zi. In Schauberger et al. (2017), the presented
model is applied to data from the Bundesliga season 2015/16.

The response Yi(r,s) encodes an ordered response with K categories (including a
category for draws) for a match between team ar and team as on matchday i where
ar plays at its home ground. The linear predictor of the model contains the following
terms:

δr team-specific home effects of team ar
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θk category-specific threshold parameters
βr0 team-specific intercepts
zir p-dimensional covariate vector that varies over teams and matches
αr p-dimensional parameter vector that varies over teams.

Instead of fixed abilities γr, the teams have abilities γir = βr0+ zT
irαr which differ

for each matchday depending on the covariates of team ar on matchday i. In its
general form, the model has a lot of parameters that need to be estimated. It could,
for example, be simplified if both the home effect and the covariate effects were
included with global instead of team-specific parameters. For this purpose, we use
penalty terms to decide whether the home effect or single covariate effects should
be considered with team-specific or global parameters. In particular, the absolute
values of all pairwise differences between the team-specific home advantages are
penalized using the L1 penalty term

P(δ1, . . . ,δm) = ∑
r<s
|δr−δs| . (5)

The penalty term enforces the clustering of teams with equal home effects as it is
able to set differences between parameters to exactly zero. Therefore, the penalty
could for example produce three clusters of teams where each of the clusters has
a different home effect. As an extreme case, the penalty leads to one global home
effect if all differences are set zero.

Also the team-specific covariate effects are penalized. The respective penalty
term penalizes the absolute values of all pairwise differences of the covariate pa-
rameters and of the parameters themselves, i.e.

J(α1, . . . ,αm) =
p

∑
j=1

∑
r<s
|αr j−αs j|+

p

∑
j=1

m

∑
r=1
|αr j| . (6)

The penalty enforces clustering of teams with respect to certain on-field variables,
possibly leading to global effects instead of team-specific effects. Moreover, due
to the penalization of the absolute values, covariates can be eliminated completely
from the model. For comparability of the penalties and the resulting effects, all
covariates have to be transformed to a joint scale.

Finally, both penalty terms are combined and the respective penalized likelihood

lp(·) = l(·)−λ (P(δ1, . . . ,δm)+ J(α1, . . . ,αm))

is maximized, l(·) denoting the (unpenalized) likelihood. The tuning parameter λ is
chosen by 10-fold cross-validation with respect to the so-called ranked probability
score (RPS) proposed by Gneiting and Raftery (2007). The RPS for ordinal response
y ∈ {1, . . . ,K} can be denoted by

RPS(y, π̂(k)) =
K

∑
k=1

(π̂(k)−1(y≤ k))2,
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where π(k) represents the cumulative probability π(k) = P(y ≤ k). In contrast to
other possible error measures (e.g. the deviance or the Brier score), it takes the
ordinal structure of the response into account.

4 Application to Bundesliga Season 2016/17

We now apply the model to data from the Bundesliga season 2016/17. The data
contain each of the 306 macthes of this season on the 34 matchdays. For easier
interpretation of the intercepts, the covariates were centered (per team around the
team-specific means). Centering of covariates only changes the paths (and interpre-
tation) of the team-specific intercepts. Now, the intercepts represent the ability of a
team when every covariate is set to the team-specific mean. Beside that, the paths
and the interpretation of the covariate effects are not affected by the centering of the
covariates. They represent the effect of a covariate on the ability of a team when the
respective covariate deviates from the team-specific mean.

Figure 1 illustrates the parameters’ paths for the proposed model, separately for
each covariate along the tuning parameter λ . The dashed vertical line indicates the
model that was selected by 10-fold cross-validation. In contrast to the home effects
and all covariate effects, the team-specific intercepts are not penalized and, con-
sequently, do not show any particular clusters of teams. Bayern München clearly
dominated the league in this season which is also represented by a very high team-
specific intercept.

The paths of the home and the covariate effects clearly illustrate the clustering
effect of the penalty terms. It can be seen that the home effect seems to be equal
for all teams. The home effect is positive and, therefore, represents an actual home
advantage for all teams as it was expected. The greatest effect of all covariates can
be seen for Distance. It has a strong positive effect for all teams. The teams gain
better results in matches where they had a good running performance. Interestingly,
the covariate BallPossession has negative effects for all teams. Here, only Darm-
stadt 98 is separate from the other teams with an even more negative effect while all
other teams form a big cluster for this variable. None of the variables is eliminated
completely from the model, each variable has effects for at least two of the teams.
TacklingRate and ShotsonGoal have (small) positive effects for all teams. Figure 2
shows the RPS of the cross-validation along the tuning parameter λ .

5 Concluding remarks

This work deals with data from the German Bundesliga from the season 2016/17
and considers several on-field variables in a paired comparison model. We propose
a model that is able to make use of the big amount of data that is collected in modern
football and to simultaneously connect the corresponding variables to the outcome
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Fig. 1 Parameter paths, separately for home effect, intercepts and all (centered) covariates. Dashed
vertical line represents the optimal model according to 10-fold cross-validation.



8 Gunther Schauberger and Andreas Groll

4 3 2 1 0

18
0

20
0

22
0

24
0

26
0

28
0

log(λ + 1)

R
P

S

Fig. 2 Ranked probability score (RPS) for cross-validation along tuning parameter λ for model (4).
Dashed vertical line represents optimal model according to 10-fold cross-validation.

of the matches. Complex modeling approaches are rather scarce in this area. The
model incorporates football matches into the framework of paired comparisons and
uses the general model proposed by Schauberger and Tutz (2017a) for the incorpo-
ration of different types of variables into paired comparison models.

In contrast to standard paired comparison models, the model offers a much more
flexible and less restricted approach. Each team is assigned with individual strengths
per matchday, depending on the on-field covariates of the team. This extension of
the simple Bradley-Terry model allows for a much better discrimination between
the different match outcomes and, therefore, for a better predictive performance.
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