Worthiness Based Social Scaling

Giulio D'Epifanio

Abstract

The construction of a set of scales is delineated, for evaluating the performance of social agents (e.g. providers of services as hospitals, schools, etc.) conditionally on "reference states" $x := X \in \{x_1, ..., x_R\}$ of the governed individuals. Each scale is associated to an index which uses conditional "worthiness increases" $\omega_{l|x}$, between the levels of an ordinal outcome indicator $Y := l \in (0, 1, ..., L)$. This indicator was been defined on a scheduled, by the policy-maker (PM), chain of hierarchically ordered goals. The "worthiness increases" are interpreted by modeling interrelated latent evolutionary processes, on the scheduled goal chain, up to hyperparameters γ which are driven by conditions x. Then, to standardize the set of scales on a given "reference behavior", a pseudo-Bayesian (see [1]) method is used which elicits value γ^* by minimizing "residual from updating" (see [4]). It norms the model specifications on the "reference data" of the (chosen a priori) "standard agent". Finally, adhering to general requirements in rational choices from the decision theory, a standardized worthiness-based index can be implemented, which takes into input the agents actual data.

Key words: performance index, ordinal scaling, worthiness

1 Indexing worthiness

The performance of any social agent *u* is associated to the "social behavior", described by the set of distributions (e.g. see table 1) $p_{|x}[u] := (p_{0|x}, p_{1|x}, \dots, p_{L|x})[u]$, which were realized on the set of the individuals that *u* governs, upon the levels of

Depart. of Political Sciences, via A. Pascoli 06123 Perugia Italy, e-mail: ggiuliodd@gmail.com.it

G. D'Epifanio

an ordinal classifier of outcome *Y* varying the status $x := X \in \{x_1, ..., x_R\}$ of the governed individuals.

agent A1	performance level (Y)				agent A2	performance level(Y)				agent A3	performance level(Y)				agent A4	performance level (Y)							
status (X)	I	II	ш	IV	v	status (X)	I	п	ш	IV	v	status (X)	I	п	ш	IV	v	status (X)	Ι	Π	ш	IV	v
x1	0	0	0	0	0	x1	2	2	0	0	0	x1	0	3	1	0	0	x1	1	3	0	0	0
x2	2	9	5	0	0	x2	3	13	9	1	0	x2	2	24	16	0	0	x2	16	37	18	0	0
x3	0	3	18	0	0	x3	1	20	31	4	1	x3	0	20	48	1	0	x3	0	36	59	4	1
x4	0	3	17	3	0	x4	1	3	59	8	1	x4	0	2	53	3	0	x4	0	12	107	10	0
x5	0	0	14	9	4	x5	0	6	48	18	3	x5	0	0	49	30	2	x5	0	0	87	43	4

Table 1 Example. Actual data of the social agents to be evaluated

reference agent A0	performance level (Y)									
status (X)	Ι	Π	ш	v	v					
x1	3	8	1	0	0					
x2	23	83	48	1	0					
x3	1	79	156	9	2					
x4	1	20	236	24	1					
x5	0	6	198	100	13					

Table 2 Example. Reference data of the standard-agent A_0

Suppose that the PM has specified a certain chain of, increasingly challenging, binary-outcome goals

$$O_0 \leq O_1 \leq O_2 \leq \dots \leq O_l \leq \dots \leq O_{L-1} \leq O_L := O_{Full}, \tag{1}$$

which are hierarchically (i.e. Guttman like) ordered. Then, the (nominally recoded on $\{0, 1, ..., L\}$) ordinal outcome indicator Y is defined so that the event occurrence " $Y \ge l$ " identifies the achieving of the *l*-th scheduled goal $O_l := (Y \ge l)$, l := 0, ..., L. Therefore, the pursued "full purpose" could be realized at different degree of achieving, from the "tautological" (i.e. alway achieved) goal $O_0 := (Y \ge 0)$ toward the final goal O_L . Let \mathcal{P}^* denote the population of the (real or perhaps virtual) individuals which are governed by the reference agent (e.g. a recognized "best practice" for standardization) A_0 (e.g. see table 2). Then, the criterion of intrinsic worthiness (see [3]) may be interpreted¹ on a goal-based probabilistic setup as follows.

For any actual individual *i*, having achieved goal O_{l-1} on chain of goals (1), the higher "the risk of failing the next goal O_l ", referring such a risk on the population \mathcal{P}^* , the greater the "increase of worthiness", due to the performance of the agent which governs *i* "as if" *i* was in \mathcal{P}^* , whenever it actually achieves goal O_l .

¹ Consider hierarchical chain of goals (1). Given that a certain goal O_{l-1} has been achieved, the greater the resistance, with reference to the evaluation framework, to also achieve the next pursued goal O_l , by continuing to improve, the greater the increment of value due to the intrinsic worthiness of who, effectively, is able to achieve it.

Worthiness Based Social Scaling

Thus, the \mathscr{P}^* -standardized, conditionally on status $x := X \in \{x_1, ..., x_R\}$, worthiness increase between any two adjacent levels of $Y := l \in (0, 1, ..., L)$ is provided² (for l := 1, ..., L) by:

$$\omega_{l|x}^* := \Delta_{l-1} Val_{|x} := Val_{|x}(O_l) - Val_{|x}(O_{l-1}) =$$

$$= \varphi_l \left(\frac{Pr\{Y = l-1|x; \mathscr{P}^*\}}{Pr\{Y \ge l-1|x; \mathscr{P}^*\}} \right) = \varphi_l \left(\frac{p_{l-1|x}}{p_{l-1|x} + p_{l|x} + \dots + p_{L|x}} \right) \ge 0$$
(2)

Here, continuous monotone functions $\varphi_l(.)$ (e.g. set here the identity) of the conditional probability rates may be chosen (see [3]) for specifying some characteristics (e.g. the additivity) of the scale. Formally re-interpreting "worthiness increases" as "utility increases", functionals of the "rank dependent expected utility", adhering to requirements of rational choices (e.g. see [2], pp. 559), leads to the following instance of conditional-expectation-based index³:

$$u :\longmapsto W[p_x[u]; \omega_x^*, x] := \sum_{l=1}^{L} \varphi_l(\frac{Pr\{Y = l-1 | x; \mathscr{P}^*\}}{Pr\{Y \ge l-1 | x; \mathscr{P}^*\}}) \cdot (1 - F_{Y|x}[p[u]](l))$$
(3)

Here, $F_{Y|x}[p]$ denotes the cumulative distribution such that $F_{Y|x}[p](l) = p_{0|x} + p_{1|x} + \cdots + p_{(l-1)|x}$. Thus, through $x \in \{x_1, \ldots, x_R\}$, it may be defined the global evaluation index: $u \mapsto \sum_{r=1}^{R} q_r \cdot W[p_{x_r}([u]; \omega_{x_r}(\mathscr{P}^*)]]$. It uses the actual agents data (e.g. see table 1)), standardized on the reference-agent's data (e.g. see table 2). Here, $q_r \ge 0$ ($\sum_{i=1}^{R} q_r = 1$) weights⁴ the reference domain for the status x_r .

2 Eliciting standardized worthiness increases

To justify differences in "worthiness increases" (2), through reference conditions $x := X \in \{x_1, ..., x_R\}$, the PM may adopt some "reference evaluation criterion" and working assumptions formally specified by means of a structural probabilistic model (4)-(7). Here⁵, the conditional rates $(1-v_{rl})$ (which enter "worthiness increases"

² It is the worthiness credit which is gained by any social agent in improving the condition of a "*standard individual*", in the reference condition $x \in \{x_1, \ldots, x_R\}$, from the current level (l-1) to the next *l* on the scale of *Y* which was constructed on goal chain (1).

³ for any agent u, given x, it takes into input the distribution realized (e.g. see table 1), by the individuals that u governs in condition x, on the standardized worthiness-quantified levels of Y.

⁴ these weights should represent the political relevancy of the "social reference domains" to the main aim of the PM.

⁵ On the stratum of the n_r individuals in the condition x_r , the manifest outcome (Y_{r0}, \ldots, Y_{rL}) is distributed as a multinomial (eq.4) where the expectation-parameters $\psi_r := (\psi_{r0}, \psi_{r1}, \ldots, \psi_{rL})$ are normed, within the container Dirichlet model (eq. 5), on a set of constraints on the latent evolutionary processes undertaken the levels of outcome scale *Y* (eqs (6)-(7)).

(2)) are represented as latent parameters of interrelated evolutionary-processes behind the goals chain (1), which are driven by manifest conditions *x* up to hyperparameters⁶ $\gamma := (\mu_0, \delta, \beta^X)$ to be regulated. Then, the methodological question arises in automatic eliciting of values γ^* so that "worthiness increases" $\omega_{l|x}(\mathscr{P}^*; \gamma^*)$ enter evaluation indexes (3). To norm the model on the reference-agent's data table (2), recalling a "minimum information principle"⁷, hyper-parameters γ may be regulated (e.g. see [5],[4]) to that value γ^* such that the "*residual from updating*"⁸ || *Vec* ($E(\Psi | y, x; \gamma, w) - E(\Psi | x; \gamma, w)$) || is minimized subject to specifications of constraints (6)-(7).

$$Y_{r} := \{Y_{r0}, \dots, Y_{rL}\} | \psi_{r}^{ma.} \sim r_{r=1,\dots,R}^{ma.} Mult(y_{r0}, \dots, y_{rL}; \psi_{r0}, \psi_{r1}, \dots, \psi_{rL}, n_{r})$$

$$(4)$$

$$\psi_{r} := (\psi_{r0}, \psi_{r1}, ..., \psi_{rL}) | m_{r}, a_{r} \sim r_{r=1,...,R} Dirichlet(\psi_{r0}, ..., \psi_{rL}; m_{r}, a_{r})$$
(5)

$$m_r := (m_{r0}, m_{r1}, \dots, m_{rL}), 0 < m_{rl} := E[\psi_{rl}] < 1, \sum_{s=0}^{L} m_{rs} = 1, \quad a_r := w_r, w_r > 0$$

$$m_{r0} = e^{\eta_{r1}}$$
(6)

$$v_{r1} := \frac{m_{r0}}{m_{r0} + m_{r1}} = \frac{e^{\eta_{r1}}}{1 + e^{\eta_{r1}}},$$

$$v_{rl} := \frac{m_{r0} + \dots + m_{r(l-1)}}{m_{r0} + m_{r1} + \dots + m_{rl}} = \frac{e^{\eta_{irl}}}{1 + e^{\eta_{rl}}},$$
(6)

$$\nu_{rL} := \frac{m_{r0} + \dots + m_{r(L-1)}}{m_{r0} + m_{r1} + \dots + m_{rL}} = \frac{e^{\eta_{rL}}}{1 + e^{\eta_{rL}}},$$

$$\eta_{rl} = \mu_0 + \sum_{s:=1}^{L} \delta_l \cdot I_{(s=l)} + \sum_{w:=2}^{R} \beta_{w(l-1)}^X \cdot I_{(X(r)=w)}$$
(7)

$reference\ condition\ r:=1,...,R:=5;\ scale\ level\ transitions\ l:=1,...,L:=4$

References

- [1] Casella G, Robert C P (2002) Monte Carlo Statistical Methods (third printing). Springer, New York
- [2] Chateauneuf A., Cohen M., Meilijson I. (2004), Four Notions of Mean-preserving Increase in Risk, Risk attitudes and Applications to the Rank-dependent Expected Utility Model, Journal of Mathematical Economics 40, 547-571
- [3] D'Epifanio G (2011) Sviluppo di un Indice Multi-attributo per la Valutazione del Merito. In "Criteri e indicatori per misurare l'efficacia delle attivit universitarie", vol I, pp. 279, CLEUP, Padova (for previous versions see: http://www.ec.unipg.it/DEFS/depifanio.html?lang=it)
- [4] D'Epifanio G (2005) Data Dependent Prior Modeling and Estimation in Contingency Tables. In: Vichi M. et al (eds) Studies in Classification Data Analysis and Knowledge Organization, Springer-Verlag, NewYork http://www.springerlink.com/content/j73233521955n624/?p=6505e914841943a6bbeaf8cbd144238b&pi=3

⁶ Hyper-parameters μ_0 , δ represent, respectively, the common base-line and increments in the level scores of the scale; instead, the parameters of profile β^X represent the crossed effects of condition and levels, in transition processes. Here, $I_{(.)}$ denote a binary indicator function.

⁷ "The less a prior representation of knowledge is updated by current data, the more intrinsically it already was accounted for by the *intrinsic information* added by such data"

⁸ Here, $E(\Psi | y, x; \gamma, w)$ denotes the predictive expectation of full parameter profile $\Psi := (\psi_1, .., \psi_R)$ which is updated by outcome *y*, whereas $E(\Psi | x; \gamma, w)$ is his non updated counterpart, over the design-point *x*

Worthiness Based Social Scaling

- [5] D'Epifanio G (1996) Notes on A Recursive Procedure for Point Estimation. Test, **5**, **1**, 1-24, http://www.oringerlink.com/content/m0458041m043/2p=6505e014841943a6bbeaf8cbd144238b
- http://www.springerlink.com/content/m0458041m043/?p=6505e914841943a6bbeaf8cbd144238b&pi=0
 [6] D'Epifanio G (2017) Indexing the Normalized Worthiness of Social Agents In: Perna C. et al (eds) Studies in Theoretical and Applied Statistics, SIS 2016, Springer-Verlag (forthcoming)