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Abstract In this paper we introduce a Bayesian model for clustering individuals
with covariates. This model combines the joint distribution of data in the sample,
given the parameter and covariates, with a prior for this parameter. Here, the parti-
tion of the sample subjects is the parameter, and the prior we assume encourages two
subjects to co-cluster when they have similar covariates. Cluster estimates are based
on the posterior distribution of the random partition, given data. As an application,
we fit our model to a dataset on gap times between recurrent blood donations from
AVIS (Italian Volunteer Blood-donors Association), the largest provider of blood
donations in Italy.
Abstract Introduciamo un modello per il clustering di individui in presenza di co-
variate. Il modello combina la distribuzione congiunta dei dati, condizionatamente
al parametero e alle covariate, con una prior per il parametro stesso, secondo
l’approccio bayesiano. Qui il parametro è la partizione dei soggetti nel campione.
La prior che introduciamo incoraggia due soggetti a stare nello stesso gruppo se
hanno covariate simili. Applicheremo il nostro modello ad un dataset che riguarda
le donazioni di sangue ripetute nel tempo.
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1 Introduction

In this paper, we introduce a Bayesian model for clustering individuals with covari-
ates. Typically, in the Bayesian framework, there are two approaches for clustering.
The first one assumes data to be independently distributed according to a mixture of
parametric densities (possibly depending on covariates), with k components; k may
be finite, with a prior on k, or infinite (k = +∞), corresponding to a Bayesian non-
parametric mixture. The second approach assumes a prior directly on the partition
of sample subjects into clusters. Dirichlet process mixtures (DPMs), popularized by
[4], are an example of Bayesian nonparametric models, where the weights of the
infinite mixture are constructed using the stick-breaking representation (see [14]).
Advantages of DPMs over finite mixtures with a prior on the number of compo-
nents are the existence of generic Markov chain Monte Carlo (MCMC) algorithms
for posterior inference to adapt to various applications and elegant mathematical
properties of the nonparametric model; see [11] for a discussion on both models.
Any DPM induces a random partition of the subject labels {1,2, . . . ,n} through the
values of the parameters (θ1, . . . ,θn) identifying the mixture component the obser-
vations are sampled from; in fact, since the mixing measure is almost surely dis-
crete, there are ties in (θ1, . . . ,θn) with positive probability. Two subjects i and l
share the same cluster if and only if θi = θl . In general, this relationship holds for
any Bayesian nonparametric mixture model where the mixing measure is an almost
surely discrete random probability measure.

In this paper, we follow the second Bayesian approach to clustering, which is
more direct, since the random parameter of the model is the subject of the inference
itself, i.e. the partition of the sample subjects. To define the model, we assign the
joint conditional distribution of data in the sample, given the random partition, and
the prior for this parameter. Corresponding cluster estimates are summaries of the
posterior distribution of the random partition, given data. In particular, our prior
depends on covariates, and we encourage, a priori, two subjects to co-cluster when
they have similar covariates.

Our model is a generalization of the PPMx model proposed in [12], a product
partition model with covariates information, extending the product partition model
by [7]. This latter assumes a prior probability mass function for the random par-
tition ρn = {A1, . . . ,Akn} proportional to the product of functions defined over the
clusters, which are called cohesion. In [12], as well as in its generalizations, the co-
hesion function is restricted to be the one induced by the Dirichlet process, namely
c(S j) = κ(n j− 1)!, where κ is a positive constant and n j is the size of cluster A j.
However, this cohesion inherits “the rich-gets-richer” property of the Dirichlet pro-
cess, i.e. sampled posterior partitions consist of a small number of large clusters,
where new observations are more likely to join already-large clusters with probabil-
ity proportional to the cardinality of the cluster.

To overcome this limitation, we introduce a more general class of PPMx models,
with cohesion induced by normalized completely random measures (NormCRMs);
see [13]. We perturb the product partition expression of the prior of the random par-
tition via a similarity function g which depends on all the covariates associated to
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subjects in each cluster. Such g can be any non-negative function of some similarity
measure guaranteeing that the prior probability that two items belong to the same
cluster increases if their similarity increases. Note that we call our model “nonpara-
metric”, even though the random partition parameter has finite dimension; however
its dimension is huge and increases with sample size. We are also able to build a
general MCMC sampler to perform posterior analysis that does not depend on the
specific choice of similarity. We test our model on a simulated dataset, and on a
dataset on gap times between recurrent blood donations from AVIS (Italian Volun-
teer Blood-donors Association), the largest provider of blood donations in Italy. For
the latter application, the problem is to find suitable methods to cluster recurrent
event data, and predict a new recurrent event, using covariates describing personal
characteristics of the sample individuals. In this paper, we model the sequence of
gap times between recurrent events (blood donations) since donors are expected to
donate blood not before a fixed amount of time imposed by the law. According to
AVIS standard practice, the gap time between donations is the quantity that can be
influenced for a better planning of the overall daily blood supply.

2 Bayesian covariate driven clustering

In a regression context, let yyyi,xxxi, i = 1, . . . ,n be the vector of responses and covari-
ates for subject i, with dim(yyyi) = ni; we assume ni = 1 for all i in this section for
greater clarity. We denote by yyy∗j (and xxx∗j ) the set of all responses yi (and covariate
vectors xxxi) in cluster A j; the notation will be used later in the paper. We start from
a family of regression models f (·;xxx,θ), θ ∈ Θ ⊂ Rl , and specify a hierarchical
model that encourages subjects with similar covariates to be in the same cluster,
using a data dependent prior for the random partition of data. We assume that data
are independent across groups, conditionally on covariates and the cluster specific
parameters; these are i.i.d from a base distribution P0. Covariates enter both in the
likelihood and the prior in our model. Concretely, we assume:

Y1, . . .Yn|x1, . . . ,xn,θ
∗
1 , . . . ,θ

∗
kn
,ρn ∼

kn

∏
j=1

f (y∗j |x∗j ,θ ∗j ) (1)

θ
∗
1 , . . . ,θ

∗
kn
|ρn

iid∼ P0 (2)

p(ρn = {A1, . . . ,Akn}|x1, . . . ,xn) ∝

∫ +∞

0
D(u,n)

kn

∏
j=1

c(u,n j)g(x∗j)du (3)

where n j denotes the size of cluster A j, g(x∗j) is the similarity function on cluster
A j such that g( /0) = 1, and P0 is a diffuse probability on the parameter space. Here
D(u,n) and c(u,n j) are defined as:

D(u,n) =
un−1

Γ (n)
exp{−κ

∫ +∞

0

(
1− e−us)

ρ(s)ds}
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where ρ(ds) =
1

Γ (1−σ)
s−1−σ e−s

1(0,+∞)(s)ds and

c(u,n j) =
∫ +∞

0
κsn j e−us

ρ(s)ds =
κ Γ (n j−σ)

Γ (1−σ)

1
(1+u)n j−σ

. (4)

The intensity ρ(ds), the positive parameter κ and the probability P0 define a specific
class of normalized completely random measures, called normalized generalized
gamma process (NGG). Parameter σ has a deep influence on the clustering behav-
ior. In particular, the discount parameter σ affects the variance: the larger it is, the
more disperse is the distribution on the number of clusters. This feature mitigates
“the rich-gets-richer” effect, typical of the Dirichlet process, leading to more homo-
geneous clusters. For more details on the behavior of σ in NGG’s, see for instance
[3], [10] and [2].

The likelihood specification in (1) may be any model, from simple regression
models to the more complex models for gap times of recurrent events as in the
AVIS application. The prior (3) is a perturbation of a prior for ρn, called product
partition model (PPM) and introduced in [7]. When g ≡ 1, i.e. there are no extra
information from covariates, the prior mass of each cluster depends only on its size
through c(u,n j); when g is a proper function, the higher is the value of g(x∗j), i.e.
the more similar are covariates in cluster j, the higher is the prior probability mass
of that cluster. This interpretation is justified since the prior p(ρn|x1, . . . ,xn) in (3)
can be equivalently written as

p(ρn|x1, . . . ,xn,u) ∝ M(u)
kn

∏
j=1

c(u,n j)g(x∗j) (5)

for some prior density on the auxiliary variable u > 0. In other words, our model is
an extension on the PPMx model, namely, it is a mixture of PPMx models (5).

It is quite natural to let the similarity to be a non-increasing function of the dis-
tance among covariates in the cluster, namely

DA j = ∑
i∈A j

d(xi,cA j) (6)

where cA j is the centroid of the set of covariates in cluster j and d is a suitable
distance function that we discuss later. Moreover, we assume g(DA j) := 1 if the size
of the set A j is 1, i.e. |A j|= 1.

The choice of the similarity is crucial, since this function controls how covariates
affect the clustering. For this reason, we propose a list of similarity functions that
proved to work reasonably well in practice; among those, here we list:

gA(x∗j ;λ ) = e−tα

, for α > 0 (α = 0.5,1,2), with t = λDA j ;

gC(x∗j ;λ ) equals to e−t log t if t ≥ 1
e , or to e1/e−1

t if t < 1
e , where t = λDA j .

Here λ > 0 is a tuning parameter. The similarity function gA is intuitive, i.e. its be-
haviour for t→+∞ is exponential. As far as the expression of gC is concerned, we
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have proposed the expression e−t log t in such a way that, for large t, we contrast the
asymptotic behavior of the cohesion function (4) induced by the NGG process. In
fact, our model works well if the prior is not completely driven by covariates, be-
cause otherwise we could lose all the advantages of a Bayesian model-based cluster-
ing approach (e.g., uncertainty quantification, prediction, sharing information across
clusters).

When the similarity is gA, if we choose a very small λ , we concentrate the values
of λDA around the origin, and hence we obtain similar values for gA(·): in this case,
the effect of covariate information on the prior of ρn will be very mild, since the
range of values that the similarity can assume is very limited. A similar argument is
valid for large values of λ . In conclusion, we calibrate λ such that gA is evaluated
in the range, say, (0,3), for this particular choice of similarity.

In the applications we consider later, covariates will always be continuous or
binary; categorical or ordinal covariates are translated into dummies. Hence, if x1
and x2 are vectors of covariates, x j = (xc

j,xb
j), where xc

j is the sub-vector of all the
continuous covariates and xb

j is the sub-vector of all binary covariates, we define the
function d in (6) as

d(x1,x2) = dc(xc
1,x

c
2)+db(xb

1,x
b
2), (7)

where dc is the Malahanobis distance between vectors, i.e. the Euclidean distance
between standardized vectors of covariates, and db is the Hamming distance be-
tween vectors of binary covariates. The choice of the distance in (7) is not unique,
but alternatives are among the subject of current research.

The way we define g does not increase the complexity of the algorithm for pos-
terior inference. Indeed, we are able to devise a general MCMC sampler to perform
posterior analysis that does not depend on the specific choice of similarity. The full-
conditionals of the Gibbs sampler are relatively easy to implement in this case, since
our algorithm generalizes the augmented marginal algorithm for mixture models in
[9] and [5].

3 Simulated data

We apply model (1)-(3) in the regression context. Here f (y∗j |x∗j ,θ ∗j ) is the Gaussian
regression model. We simulated a dataset of points (yi,xi1, . . . ,xip) for i = 1, . . . ,n,
with n= 200 and p= 4. The last 2 covariates are binary and were generated from the
Bernoulli distribution, while the first 2 were generated from Gaussian densities. The
responses yi’s were generated from a linear regression model with linear predictor
xxxT

i βββ , where βββ
0 := (β 0

0 ,β
0
1 ,β

0
2 ,β

0
3 ,β

0
4 ) and variance σ2

e = 0.5. We have generated
3 different groups by generating both covariates and responses from distributions
with different parameters.

We run the Gibbs sampler algorithm to obtain 5,000 final iterations from the full
posterior distribution, with initial burn-in of 2,000 and thinning of 10 iterations.
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A-posteriori we classified all datapoints according to the optimal partition, un-
der the different similarity functions; results are summarized in Table 1. By optimal

Table 1 Missclassification rates for the simulated dataset

missclassif rate gA gC g≡ 1
0% 4% 16%

partition we mean the realization, in the MCMC chain, of the random partition ρn
which minimizes posterior expected value of the Binder’s loss function with equal
missclassification weights [8]. Observe that there are no missclassified data using
similarity gA, while 4% of data are missclassified using gC, while the missclassifi-
cation error increases to 16% if we do not assume covariate information (g≡ 1).
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Fig. 1 Posterior distribution of Kn under gA (left), gC (center) and g≡ 1 (right).

We computed the posterior distribution of Kn, the number of clusters, in the three
cases; see Figure 1. Figure 2 displays the predictive distribution corresponding to
covariates xxx1 of the first subject. The green vertical line corresponds to the actual
observation y1. It is clear that in the last case, i.e. when we do not include covariate
information in the prior for the random partition, the predictive law is not able to
distinguish to which of the three groups the subject belongs (thus, we have three
peaks in the law). In cases A and C the predictive law exhibits only one main peak:
the covariate information helps, in this case, in selecting the right group for the
observation. This is also proved by the missclassification table above.

We underline that our prior encourages subjects with the same covariates to be
in the same cluster, so that the posterior will generally allocate these subjects in
the same cluster as well. On the other hand, if two subjects have very different
covariates, our prior would classify them to different clusters, even if their responses
are similar. However, the likelihood, i.e. the conditional distribution of data given the
parameter, could correct the prior probability, if this is the case, and could allocate
two subjects with different covariates to the same cluster.
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Fig. 2 Predictive distribution of Y1 under gA (left), gC (center) and g ≡ 1 (right); vertical lines
denote the true value

4 Blood donation data

Our data concern new donors of whole blood donating in a fixed time window in the
main building of AVIS in Milano. Data are recurrent donation times, with extra in-
formation summarized in a set of covariates, collected by AVIS physicians. The last
gap times are administratively censored for almost all the donors, except those hav-
ing their last donation exactly on that date. The dataset contains 17198 donations,
made by 3333 donors.

The statistical focus here is the clustering of donors according to the trajectories
of gap times. Figure 3 reports the histogram of this variable (in the log-scale) for men
and women. The skewness of these histograms can be explained since, according to
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Fig. 3 Histogram of the logarithm of the observed gap-times divided according to gender, male
(left) and women (right).

the Italian law, the maximum number of whole blood donations is 4 per year for
men and 2 for women, with a minimum of 90 days between a donation and the next
one. Note that the minimum for men is around 4.5 (e4.5 ' 90 days). For women,
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the distribution has a mode approximately in 5.3 in the log scale: this means 200
days, that corresponds to about 6 month and a half. Observe that donors may donate
before the minimum imposed by law, under good donor’s health conditions and the
physician’s consent.

We model gap times of successive donations as a regression model for recurrent
gap times with two linear predictor terms, involving fixed-time and time varying
covariates. The distribution of each gap time, in the log scale, is assumed to be
skew-normal (see Figure 3); using parameterization in [6], we model the logarithm
of the t-th gap time of donor i as Gaussian distributed. Cluster specific parameters
are the intercept, the skewness parameter, and the variance of the response. We
assume the prior for the random partition as in (5). Among donor’s covariates, we
include gender, blood type and RH factor, age, body mass index (BMI) and other
information.

Preliminary analysis shows that, a posteriori, age and BMI (time-varying) have
an effect on the gap time, as well as gender and RH factor. Details on the cluster
estimate will be given during the talk.
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