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Abstract The recent literature has proposed a (limited) number of approaches to
test for time reversibility, that is one of the main hypotheses in time series. A very
interesting proposal is a Gini-based framework that, among other things, includes a
test for time reversibility focussing on possible differences between backward and
forward autocorrelations. This feature is indeed useful to identify models with un-
derlying heavy tailed and non-normal innovations. In this paper we intend to shed
some more light on this and investigate, via Monte Carlo simulations, on the possi-
bility that this test can effectively have power in detecting some form of nonlinearity.
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1 Introduction

Time reversibility is one of the main features of strictly stationary Gaussian linear
stochastic processes. From an intuitive point of view, a stochastic process is said to
be time-reversible if its probabilistic structure is invariant with respect to the reversal
of the time indices. In an applications perspective, a check for time reversibility is
a useful addition to existing diagnostics for stationary data since the absence of this
feature (so the process is irreversible) signals the exclusion of serially independent
or gaussian processes as candidate models.

Starting from the late Nineties the literature has discussed the issue of testing for
time reversibility (Ramsey and Rothman, 1996; Hinich and Rothman, 1998; Chen et
al., 2000; Chen, 2003). Among the most recent contributes, Racine and Maasoumi
(2007) proposed an approach based on an entropy measure of symmetry. Psaradakis
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(2008) introduces a sample index of the deviation from zero of the median of the
one-dimensional law of differenced data. Shelef and Schechtman (2016) develop a
framework for time series anaylsis based on a set of Gini-based equivalents that,
among other things, introduces a test for time reversibility focussing on possible
differences between backward and forward (in time) autocorrelation. This feature
is indeed useful to identify models with underlying heavy tailed and non-normal
innovations. One of the nice advantages of this method is that is based on only first-
moment assumption.

While there are several finite sample experiment documenting the capability of
this class of test for time reversibility to recognize situations that depart from gaus-
sianity, in particular heavy tailed innovations, there is nothing to our knowledge
about the possibility that this test can effectively have power in dectecting some
form of nonlinearity. Indeed, although nonlinearity does not necessarily imply time-
irreversability, (see, e.g., Lewis et al., 1989) time reversible nonlinear processes ap-
pear to be the execption rather than the rule (Tong, 1990). With this in mind, in this
paper we propose a Monte Carlo experiment, where time reversibility is tested for a
variety of the most common non-linear models. For some type of models, in partic-
ular TAR and Markov Switching, the results are very promising and require further
investigation that is in the future research lines.

The paper is organizes as follows. In section 2 we recall the Gini-based time
reversibility test. In section 3 we propose our Monte Carlo experiment and some
selected results. Section 4 concludes.

2 Gini-based reversibility test

2.1 Overview

From a formal point of view, a strictly stationary discrete-parameter stochastic
process Yt is said to be time reversible if (Yt1, ...,Yth) and (Y−t1, ...,Y−th) have
the same joint distributions for every h ∈ N and any h-tuple (t1, ..., th) such that
−∞ < t1 < ... < th < ∞. Put it differently, Yt is time reversible if looking forward
and backward at the time series result in similar probabilistic structure. Weiss (1975)
showed that time reversibility for finite order ARMA processes is a typically Gaus-
sian property.

Shelef and Schechtman (2016) shows that time reversibility can be associated
to some form of symmetry. This, in turn, can be investigated by observing the be-
haviour of the two Gini autocovariances at lag s.

γ
G1
(t,tt−s)

=COV (Yt ,F(Yt−s)) γ
G2
(t,tt−s)

=COV (Yt−s,F(Yt)) (1)

The above expressions can be viewed as Gini autocovariances looking backward
and forward. Under strictly stationarity conditions, the following equality hold for
all t and s
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γ
G1
(s) =COV (Yt ,F(Yt−s)) =COV (Yt− j,F(Yt− j−s)) (2)

and
γ

G2
(s) =COV (Y(t−s),F(Yt)) =COV (Y(t− j−s),F(Yt− j)) (3)

where γ
G1
(s) and γ

G2
(s) are time independent. Note that γ

G1
(s) and γ

G2
(s) are equal in case of

time reversibility.
When stationarity holds, a Gini version of the autocorrelation function (ACF)

between Yt and Yt−s can also be defined

ρ
G1
(s) =

γ
G1
(s)

γ
G1
(s=0)

ρ
G2
(s) =

γ
G2
(s)

γ
G2
(s=0)

(4)

It is interesting to observe that for an AR(1) process, Yt = φ0 + φ1Yt−1 + εt , we
have that γ

G1
(s) = φ sγ

G1
(s=0), then ρ

G1
(s) = φ s

1 = ρ(s) and this indicates that the first Gini-
ACF is equal to the traditional ACF, denoted by ρs.

Consistent Gini-ACFs estimates are the following (Shelef and Schechtman,
2016)

ρ̂
G1
(s) =

∑
T−s
t=1 (Yt+s− Ȳ )(R(Yt)− R̄(Y1:(T−s)))

∑
T
t=1(Yt − Ȳ )(R(Yt)− R̄(Y1:T ))

(5)

and

ρ̂
G2
(s) =

∑
T−s
t=1 (Yt − Ȳ )(R(Yt+s)− R̄(Y(s+1):T ))

∑
T
t=1(Yt − Ȳ )(R(Yt)− R̄(Y1:T ))

(6)

where R(Yt) is the rank of Yt and R̄(Yi: j) = ∑
j
t=i R(Yt)/( j− i+1).

The Gini-based framework by Shelef and Schechtman (2016) also includes Gini
PACF, defined as the last coefficient of a partial Gini autoregression equation of
order s

Yt = φ
G1
s1 Yt−1 +φ

G1
s2 Yt−2 + ...+φ

G1
ss Yt−s + εt

hence
ρ

G1
( j) = φ

G1
s1 ρ

G1
( j−1)+ ...+φ

G1
ss ρ

G1
( j−s)

Plugging the second Gini ACF (ρG2
(s) ) in place of the first, leads to a second version

of the Gini PACF, that can be called second Gini-PACF. As for the estimation, the
two Gini-PACFs can be estimated solving for φ

G1
ss and φ

G2
ss , s = 1,2, ... the implied

two systems of equations.

2.2 Testing for time reversibility

Implied by the definition of time reversibility itself, a crucial feature of the Gini au-
tocorrelations is that if the series is time reversible, the Gini-ACFs at the remarkable
lags are equal. Hence, generally, if the Gini-ACFs differ, this should indicate that Yt
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and Yt−s are not exchangeable and this in turn implies time irreversibility. In order
to capture this feature in case of moving average, MA(q), processes whose ACFs
cuts off after q lags, Gini-PACFs should also be taken into consideration. This leads
(Shelef and Schechtman, 2016) to the following system of hypotheses at each lag s
for the null hypothesis of time reversibility

H01 : ρ
G1
(s) = ρ

G2
(s) and H01 : φ

G1
ss = φ

G2
ss (7)

The alternative hypothesis is that at least one of the two equation is violated (for
further detail, see the original article by Shelef and Schechtman, 2016).

The logic followed by the authors aims at identifying large absolute differences
between the sample Gini ACFs and PACFs, denoted by, respectively, θ̂Gini−ACF(s) =

ρ̂
G1
(s) − ρ̂

G2
(s) and θ̂Gini−PACF(s) = φ̂

G1
ss − φ̂

G2
ss . The test statistic then is

√
T
∣∣θ̂Gini−ACF(s)−θGini−ACF(s),H0

∣∣ and
√

T
∣∣θ̂Gini−PACF(s)−θGini−PACF(s),H0

∣∣
where under the null hypothesis the differences are equal to zero. In practice, large
value of the test statistics support rejection of the null hypothesis.

Due to the complicated sampling distribution of the Gini-based estimators, that
also involve additional restrictive assumption on the time series, critical values for
this test tests are obtained via moving block bootstrap. All details about the algo-
rithms are in Shelef and Schechtman (2016).

3 Reversibility and (non)linearity: preliminary Monte Carlo
evidence

In their original paper, Shelef and Schechtman (2016) conduct a Monte Carlo exper-
iment showing that at least at the first lags the proposed Gini-based time reversibility
test reaches a reasonably high power when the innovations of the ARMA models are
not Gaussian, but Pareto, lognormal and α–stable.

Here we intend to study the power of this test under a different setting, i.e in case
the data generating process (DGP) is nonlinear. This is a very preliminary study
and at this beginning stage we consider only some nonlinear DGPs. They are listed
below, innovations are distributed as N(0,1):

1. TAR(1,1), where

Xt =

{
−0.5Xt−1 +at Xt−1 ≤ 1
0.4Xt−1 +at Xt−1 > 1

Xt =

{
2+0.5Xt−1 +at Xt−1 ≤ 1
0.5−0.4Xt−1 +at Xt−1 > 1

Xt =

{
1−0.5Xt−1 +at Xt−1 ≤ 1
1+at Xt−1 > 1
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2. MS(1), where

Xt =

{
−0.5Xt−1 +at st = 1
0.4Xt−1 +at st = 2

with p11 = p22 = 0.5, 0.9.
3. BL(0,0,1,1), where Xt = at +0.5Xt−1at−1
4. BL(0,0,2,1), where Xt = at +0.8Xt−1at−1 +0.5Xt−2at−1

The number of Monte Carlo simulations is 2000, the number of bootstrap repli-
cations for the moving block bootstrap is 500 and the block size is 30 (following
the findings by Shelef and Schechtman, 2016). The considered sample sizes are
T = 200,500,1000.

Table 1 Percentages of rejection (m = 1,2 number of lags, nominal level 0.05)
T=200 T=500 T=1000

m = 1 m = 2 m = 1 m = 2 m = 1 m = 2
DGP1: TAR(1,1) 37.7 20.0 72.8 35.3 96.8 50.3
DGP2: TAR(1,1) 42.8 18.8 88.8 41.2 100 61.4
DGP3: TAR(1,1) 45.8 24.8 79.5 49.6 91.6 50.4

DGP4: BIL(0,0,1,1) 22.4 12.4 45.6 17.4 62.8 35.5
DGP5: BIL(0,0,2,1) 27.6 17.4 57.6 28.7 73.6 43.6

DGP6: MS(1) 100 62.4 100 82.6 100 92.3
DGP7: MS(1) 100 90.8 100 93.8 100 95.7

Our empirical power results are shown in table 1. They clearly reveal a very
interesting capability of the test to detect nonlinearity with the increase of T .
As expected, the percentage of rejections is very high for the largest sample size
(T = 1000), especially for TAR and MS model, but also for smaller values of T the
behaviour is fairly good. In particular, for the MS DGPs the test detects successfully
the nonlinear feature even at T = 200. Moreover, results are in line with the perfor-
mance of the majority of nonlinearity test in literature (see Bisaglia and Gerolimetto
(2014) for a recent survey on nonlinearity tests and a comparative Monte Carlo ex-
periment). It should be remarked that, as emphasized by Shelef and Schechtman
(2016), the performance tends to deteriorate with the increase of m.

As said at the beginning of this section, this is only a preliminary Monte Carlo
experiment. Yet, we find these results promising, in particular the test appears to per-
form well for Markov Switching models (followed by TAR models). We reckon that
this could be effectively an alternative route to check for nonlinearity. Some other
investigations are in order both in terms of Monte Carlo simulations (e.g. compari-
son with analogous test provided in the literature) and possible improvement of the
performance of the test, for instance by considering other resampling methods to
obtain the critical values.
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