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Abstract The eValuation of Research Quality (VQR) is one of the most important
assessment processes achieved by the National Agency for the Evaluation of Univer-
sities and Research Institutes. Its main task is to provide information on the status of
the Italian research system by assessing the performance of universities in various
scientific areas. The basic evaluation criteria were defined by panels of experts ac-
cording to the specific characteristics of each subject area and through a synthetic
statement on the products submitted by researchers. With the aim of studying this
phenomenon in depth, DINDSCAL (Direct Individual Differences Scaling) model is
proposed for a compositional analysis of VQR dataset.
Abstract La Valutazione della Qualità della Ricerca (VQR) è uno dei processi di
valutazione più importanti realizzati dall’Agenzia Nazionale di Valutazione del Sis-
tema Universitario. Il suo compito principale è fornire informazioni sullo stato del
sistema di ricerca italiano valutando le prestazioni delle universitın varie aree sci-
entifiche. I criteri di valutazione di base sono stati definiti da gruppi di esperti
in base alle caratteristiche specifiche di ciascuna area tematica e attraverso una
dichiarazione sintetica sui prodotti presentati dai ricercatori. Con l’obiettivo di
studiare approfonditamente tale fenomeno, il modello DINDSCAL è proposto per
l’analisi composizionale dei dati VQR.
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1 Introduction

The National Agency for the Evaluation of the University and Research Systems
(ANVUR), in the framework of an evaluation project (VQR), collected research
outputs from 96 Italian universities, including 18 research Institutes. Sixteen panel
of experts in evaluation (GEV), one for each scientific area of research, classified the
products in specific merit classes. According to Ministerial Decree no. 458 dated 27
June 2015, common guidelines were defined for all GEVs. A new approach based
on DINDSCAL (Direct Individual Differences Scaling [2]) model and composi-
tional analysis is proposed in this work to extract information regarding the criteria
used by the GEV, if the dimension of structure and the geographic location influence
the quality of research outputs. In literature the INDSCAL (Individual Differences
Scaling) model is used to study the individual differences in three-way data by dou-
bly centered set of matrices of squared dissimilarity measures between a range of
stimuli [1]. A direct approach as DINDSCAL is here preferred, in order to directly
analyse simultaneous slices of squared dissimilarity matrices organized as compo-
sitional data.
The new approach is shortly described in Sect. 2. Sect. 3 summarizes the analysis
of the VQR data.

2 Theory

2.1 Compositional data

Let V (n× p×m) be a three-way array where each row vik (i= 1, · · · ,n, k = 1, · · · ,m)
is a compositional vector of p parts observed after the kth treatment (or occasion).
From a geometrical point of view the sample space for all vectors vik is the simplex.
There is a rich literature for CoDa proprieties and how is possible to handle them in
simplex space (for a detailed review and references see [3]).
Here the CoDa are transformed in centred log-ratio (clr) in order to move from
simplex to real space [4]. Let L (n× p×m) be a three-way array with the CoDa in
logarithm scale [li jk = log(vi jk)]. The clr-coordinates for each frontal slice of X are
defined Xk = LkJp, where Lk is a n× p matrix and Jp is a p× p centring matrix,
Jp = Ip− 1

p Ep with I is an identity matrix and E is a matrix of ones. Thus, when the
columns of Xk are centred, Xk = JnLkJp, the metric multidimensional scaling (MDS)
for each Xk is given by the following identity:

−1
2

Jn(Dk�Dk)Jn = XkX>k , (1)

where ’�’ denotes the usual elementwize (Hadamard) matrix product and Dk is
a n× n symmetric matrix containing zero on main diagonal and the dissimilarity
measure between the n compositions collected at the kth occasion.
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As well as recalled, the measures in Dk are Aitchison distances. Thus, they have
all properties necessary for a meaningful interpretation of compositional results.
Moreover, the identity (1) shows that − 1

2 Jn(Dk�Dk)Jn is positive semi-definite.
With the aim to a simultaneous metric of m symmetric slices Dk, the INDSCAL
model decomposes the each slice as

−1
2

Jn(Dk�Dk)Jn = QΛkQ>+∆k, (2)

where Q is n× r assumed of full column rank, Λk diagonal matrix and ∆k is n× n
matrix, containing the errors of the model fit. In other words all slices share a com-
mon loading matrix Q and differ each other only by the (non-negative) diagonal
elements of Λk called idiosyncratic saliences.
Unfortunately, in (2) the parameter set of all n× r matrices Q with full column rank
is a non-compact Stiefel manifold. To solve this drawback an approach called direct
INDSCAL was proposed by [2].

2.2 DINDSCAL problem

Following the approach proposed by [5], it is easy to show that the squared Aitchison
distances are given by the following identity:

Dk�Dk = (In�XkX>k )En +En(In�XkX>k )−2XkX>k k = 1, ...,m. (3)

Thus, the DINDSCAL fitting problem for CoDa is concerned with the following
equality constrained optimization problem:

min
Q,Λk

m

∑
k=1
‖Dk�Dk− (In�QΛ

2
k Q>)En−En(In�QΛ

2
k Q>)+2QΛ

2
k Q>‖ , (4)

subject to (Q,Λ1,Λ2, . . . ,Λm)∈O0(n,r)×D(r)m, where D(r)m =D(r)× . . .×D(r)︸ ︷︷ ︸
m

,

and D(r) denotes the set of all r× r diagonal matrices. O0(n,r) denotes the set
of all n× r orthonormal matrices with zero column-sums, i.e.: O0(n,r) := {Q ∈
ℜn×r| Q>Q = Ir and EnQ = 0n}. It is easy to observe that the additional constraint
of clr-transformation zero column- rows sums, i.e. EnXk = 0n and XkEp = 0p does
not introduce new constrains. Thus the problem of minima defined in (4) can be
solved by a non-linear conjugate gradient algorithm, which leads to globally con-
vergent algorithms.
For a formal introduction to the method and its numerical integration see [6], while
all information about the gradient dynamical system for the DINDSCAL problem
is given in [2].
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3 Case study

The research outputs submitted from each university was calculated considering the
number of university staff members. Each product was classified in a specific merit
classes, that is, Excellent, Good, Fair, Acceptable, and Limited. Products classified
as not eligible are assigned to a specific merit class. According to the kind of re-
search outputs (articles, monographs, book chapters, etc.) bibliometric algorithm or
peer-review methodology were used to evaluate the 117,079 research outputs sub-
mitted in the 16 MIUR scientific areas.
The data are preprocessed according to the procedure described in Sect. 2.1, DIND-
SCAL is able to find some important differences between two groups of scientific
areas and between the scientific structures with different size. In short, there is a
tangible contraposition between large-size scientific structures, especially those lo-
calized in the Centre of Italy, and the others. Moreover, the medium size structures
localized in the Centre and in the South of Italy are characterized only by specific
scientific area.
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