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Abstract We address the problem of analysing a spatial dataset of manifold-valued
observations. We propose to model the data by using a local approximation of the
Riemannian manifold through a Hilbert space, where linear geostatistical methods
can be developed. We discuss estimation methods for the proposed model, and con-
sistently develop a Kriging technique for tensor data. The methodological develop-
ments are illustrated through the analysis of a real dataset dealing with covariance
between temperatures and precipitation in the Quebec region of Canada.
Abstract Si considera il problema dell’analisi di osservazioni georeferenziate a val-
ori in una varietà Riemanniana. Si propone di modellare i dati usando approssi-
mazioni locali della variet stessa attraverso opportuni spazi di Hilbert, dove metodi
geostatistici lineari possono essere sviluppati. Sono discussi metodi di stima per il
modello proposto, ed consistentemente sviluppato un metodo di Kriging per dati
tensoriali. Gli sviluppi metodologici sono illustrati attraverso l’analisi di un dataset
reale riguardante l’analisi di matrici di covarianza tra temperature e precipitazioni
nella regione del Quebec, in Canada.
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1 Introduction

The statistical analysis of spatial complex data has recently received much attention
in the literature, motivated by the increasing availability of heterogenous datasets
in environmental field studies. In this framework, Object Oriented Spatial Statistics
(O2S2) (Menafoglio and Secchi, 2017) is a recent system of ideas and methods that
allows the analysis of complex data when their spatial dependence is an important
issue. The foundational idea of O2S2 is to interpret data as objects: the atom of the
geostatistical analysis is the entire object, which is seen as an indivisible unit rather
than a collection of features. In this view, the observations are interpreted as random
points within a space of objects – called feature space – whose dimensionality and
geometry should properly represent the data features and their possible constraints.

In this communication, we focus on the problem of analyzing a set of spatial
tensor data. These are georeferenced data whose feature space is a Riemannian
manifold. Informally, Riemannian manifolds are mildly non-Euclidean spaces, in
the sense that they are non-Euclidean, but can be locally approximated through a
Hilbert space. In this setting, the linear geostatistics paradigm (Cressie, 1993) can-
not be directly applied, as the feature is not close with respect to the Euclidean
geometry (e.g., a linear combination of elements in the manifold does not necessar-
ily belong to the manifold). However, following Pigoli et al. (2016), we shall discuss
the use of a tangent space approximation to locally describe the manifold through a
linear space, where the linear methods of Menafoglio et al. (2013) can be applied.

Although the presented approach is completely general, for illustrative purposes
we will give emphasis to the case of positive definite matrices. The latter find ap-
plication in the analysis and prediction of measures of association, such as the co-
variance between temperature and precipitation measured in the Quebec region of
Canada, which are displayed as green ellipses in Figure 1 (data source: Environment
Canada on the website http://climate.weatheroffice.gc.ca).

2 A tangent space approximation to kriging for tensor data

To set the notation, call M a Riemannian manifold and, given a point P in M , let
H be the tangent space at the point P, H = TPM . The latter is a Hilbert space
when equipped with an inner product 〈·, ·〉H in H . Given two points, the shortest
paths between these points on the manifold is called geodesics. Under technical
assumptions on M , for every pair (P;T ) ∈M ×TPM , there is a unique geodesic
curve g(t) such that g(0) = P and g(0) = T . The exponential map is defined as
the smooth map from TPM to M , which maps a tangent vector T ∈ TPM to the
point at t = 1 of the geodesic starting in P in direction T . We denote by expP the
exponential map in P, and by logP its inverse. More details on these definitions and
on the properties of Riemannian manifolds can be found, e.g., in (Lee, 2012) and a
detailed example for the case of the manifold of positive definite symmetric matrices
is discussed in Section 3.
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Given a spatial domain D ⊆ Rd and n locations s1, ...,sn in D, we indicate by
Ss1 , ...,Ssn the manifold-valued observations at those locations (e.g., the covariance
matrix between temperature and precipitation of Figure 1). As in classical geostatis-
tics, we assume the data to a partial observation of a random field {Ss,s∈D}, valued
in M . For a location s in the spatial domain D, we model the random element Ss,
taking value in M , as

Ss(a,P) = expP(A(f(s);a)+δ s), (1)

where, A(f(s);a) is a drift term defined in the tangent space H , and δ s is a zero-
mean stochastic residual. In this work, we focus on drift terms expressed in a linear
form

A(f(s);a) =
L

∑
l=0

fl(s) ·al ,

where a0, ...,aL are coefficients belonging to H and fl(s) are scalar regressors. We
further assume that the random field {δ s,s ∈ D}, is a zero-mean globally second-
order stationary and isotropic random field in the Hilbert space H , with covari-
ogram C (Menafoglio et al., 2013), i.e., for si,s j in D,

C(‖si− s j‖d) = E[〈δ (si),δ (s j)〉2H ],

‖si− s j‖d denoting the distance between si,s j in D. We denote by Σ ∈ Rn×n the
covariance matrix of the array δ = (δ s1 , ...,δ sn)

T in H n, that is Σi j =C(‖si−s j‖2
d),

and call R ∈H n the array of residuals Ri = A(f(s);a)− logP(Si). Given the array R
and a matrix A ∈ Rp×n, we define the matrix operation AR as (AR)i = ∑

n
j=1 Ai jR j,

i = 1, ..., p.
Given the observations Ss1 , ...,Ssn , we now aim to estimate the model (1), and

make prediction at unsampled locations. To estimate (P,a) accounting for the spatial
dependence, a generalized least square (GLS) criterion, based on minimizing the
functional

(P̂, â) = argmin
P∈M ,a∈H L+1

||Σ−1/2R||2H n , (2)

can be used. In (2), H n denotes the cartesian space H ×·· ·×H , which is a Hilbert
space when equipped with the inner product 〈x,y〉H n = ∑

n
i=1〈xi,yi〉H . Given Σ ,

problem (2) can be solved iteratively, by alternatively minimizing the GLS func-
tional in (2) with respect to P given a and viceversa. Since in practice both the
parameters and the spatial dependence are unknown, one needs to resort to a nested
iterative algorithm. The complexity of such minimization is problem dependent, and
may require the development of specific optimization techniques.

Given the estimated (P̂, â, Σ̂), the spatial prediction can be performed by us-
ing the tangent space model as follows. In the Hilbert space H , the simple krig-
ing predictor for δ s0 is well-defined and it is obtained as ∑

n
i=1 λ 0

i δ̂ si , where δ̂ si

indicates the estimated residual at si, δ̂ si = A(f(si); â)− logP̂(Si), and the vector

of kriging weights λ 0 = (λ 0
1, ...,λ

0
n) is found as λ 0 = Σ̂

−1
c, with c = (Ĉ(||s1 −
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s0||d), . . . ,Ĉ(||sn− s0||d))T . The spatial prediction of S at the target location s0 is
then

Ŝ0 = expP̂(â
GLS
0 (P̂)+

L

∑
l=1

âGLS
l (P̂) fl(s0)+

n

∑
i=1

λ
0
i δ̂ si),

where f(s0) is the vector of covariates given at the location s0. Uncertainty quantifi-
cation of such estimate can be performed by resampling methods, e.g., via bootstrap
(Pigoli et al., 2016).

3 Analysis of covariance matrices in the Quebec region

We here discuss the application of the method recalled in Section 2 to the covari-
ance matrices displayed in Figure 1. Those data where estimated from temperature-
precipitation data recorded in the month of January along the years 1983-1992.

Recall that the covariance matrix of a p-variate random variable belongs to the
Riemannian manifold PD(p) of positive definite matrices of dimension p, which is
a convex subset of Rp(p+1)/2 but it is not a linear space. The tangent space TPPD(p)
to PD(p) in the point P ∈ PD(p) can be identified with the space of symmetric
matrices of dimension p, Sym(p). A Riemannian metric in PD(p) is then induced by
the inner product in Sym(p). Following (Pigoli et al., 2016), we consider the scaled
Frobenius inner product in Sym(p), which induces the exponential map expP(A) =
P

1
2 exp(P−

1
2 AP−

1
2 )P

1
2 , and the logarithmic map logP(D) = P

1
2 log(P−

1
2 DP−

1
2 )P

1
2 ,

where exp(A) stands for the exponential matrix of A ∈ Sym(p), and log(C) for the
logarithmic matrix of C ∈ PD(p).

The linear model for the drift in the tangent space was set to A(φi,λi) = a0 +
a1φi, (φ ,λ ) denoting longitude and latitude. Such model was chosen by Pigoli et al.
(2016) as to guarantee the stationarity of the residuals of (2). The drift coefficients
and the structure of spatial dependence were estimated by numerically optimizing
functional (2). The estimated drift and the predicted field are displayed in Figure 1a-
b. A possible meteorological interpretation is associated with the exposition of the
region toward the sea. Indeed, the drift model accounts for the distance between the
location of interest and the Atlantic Ocean, which is likely to influence temperatures,
precipitations and their covariability.

4 Conclusion and discussion

Object Oriented Spatial Statistics allows dealing with general types of data, by us-
ing key ideas of spatial statistics, revised according to a geometrical approach. In
this communication we focused on the spatial analysis of tensor data, through the
use of a tangent space approximation. Such approximation is appropriate to threat
observations whose variability on the manifold is not too high. Simulation studies
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(a) Estimated drift (b) Kriging prediction

Fig. 1 Kriging of the (temperature, precipitation) covariance matrix field during January, with a
drift term depending on longitude. A covariance matrix S at location s is represented as an ellipse
centered in s and with axis √σ je j , where Se j = σ je j for j = 1,2. Horizontal and vertical axes of
the ellipses represent temperature and precipitation respectively. In subfigure (a) and (b) green el-
lipses indicate the data, blue ellipses the estimated drift and the kriging interpolation, respectively.
Modified from (Pigoli et al., 2016).

(Pigoli et al., 2016) showed that the method is robust to a moderate increase of the
variability on the manifold. However, in cases characterized by a very high variabil-
ity, more complex models should be used. A recent extension of the model, which is
currently investigated by the authors, regards the use of local tangent space models
to describe the field variability. This approach is based on the idea of embedding the
model here illustrated in a novel computation framework developed in (Menafoglio
et al., 2018) and based on the idea to repeatedly partition the domain through Ran-
dom Domain Decompositions. Such an extension will potentially allow to improve
the characterization of the field variability, and the associated predictions.
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