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Abstract We investigate the use of fractionally integrated MGARCH models from
a forecasting and a risk management perspective for energy prices. Our in-sample
results show significant evidence of long memory decay in energy price returns
volatilities, of leverage effects and of time-varying autocorrelations. The forecasting
performance of the models is assessed by the SPA test, the Model Confidence Set
and the Value at Risk.
Abstract I modelli MGARCH frazionalmente integrati vengono impiegti in questo
lavoro per lo previsione e la gestione del rischio nel mercato dei prodotti ener-
getici. I risultati ottenuti mostrano la presenza di long-memory nella volatilità dei
rendimenti dei prezzi, effetti di leverage e autocorrelatione variante nel tempo. La
capacit previsiva di questi modelli è stata verificata mediante il test SPA, il Model
Confidence Set e il Value at Risk.
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1 Introduction

The effects of oil price shocks on macroeconomic variables, the impact on the finan-
cial sector of energy prices fluctuations, the degree of integration between different
energy markets, have been the main fields of a increasing studies. It seems to be a
growing consensus in the literature on the use of multivariate GARCH (MGARCH)
models. A main reference can be Wang and Wu (2012) that compare the forecast-
ing performances of several univariate and bivariate GARCH-type models for spot
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price returns of crude oil (WTI), conventional gasoline (NYH), heating oil (NYH)
and jet fuel. Using several univariate loss functions, they find that the full and diag-
onal BEKK cannot be outperformed by any other model according to the superior
predictive ability (SPA) test of Hansen (2005). Growing attention has been devoted
to the problem of an accurate modelling and forecasting of energy price volatilities
and correlations for portfolio construction, hedging purposes and risk management.
The multivariate model used to these ends should capture all the statistical regular-
ities of the volatility series and allow for time dependent correlations. While there
is significant empirical evidence that univariate energy price volatilities display a
strong degree of persistence, consistent with a long memory structure (e.g. Chang et
al., 2010), it would seem that no attempt to include it in multivariate models has yet
been made. More, choosing the most appropriate MGARCH specification must also
entail comparison of the models’ forecasting abilities and usefulness in a decision
based framework. Most forecasting comparisons in the energy literature are based
on univariate loss functions and univariate tests such as the Diebold-Mariano, that
do not allow for joint evaluation of volatilities and correlations forecasts accuracy.
Indeed a comprehensive conditional variance matrix forecasts comparison based on
matrix loss functions seems to be lacking so far. This paper investigates and ana-
lyze the comovements across three major energy markets, namely crude oil (West
Texas Intermediate-Cushing Oklaoma), conventional gasoline (New York Harbor)
and heating oil (New York Harbor), by means of several multivariate GARCH-type
models with particular attention on the fractionally integrated dynamic conditional
correlation (FI-DCC) model. This multivariate GARCH models with long memory,
asymmetries and dynamic correlations significantly improves the models’ in sample
and forecasting performance, and then the attractiveness in terms of risk monitoring
of this class of models.

The aims of this papers are: (i) compare the in sample performances of several
alternative multivariate GARCH models for the returns on the spot prices of the
three series using standard information criteria; (ii) evaluate their forecasting ac-
curacy using the Superior Predictive Ability (SPA) test of Hansen (2005) and the
Model Confidence Set (MCS) method of Hansen, Lunde and Nason (2011); (iii)
explore the efficiency gains in using the fractionally integrated DCC model for one
step ahead Value at Risk prediction for short and long positions.

2 Data and models estimations

The series under investigation are the spot energy price returns of the crude oil
(CO), conventional gasoline (CG) and heating oil (HO). We obtain 6401 valid daily
observations from June 1st 1992 till June 12th 2017 from the Energy Information
Administration (EIA) in the U.S. Department of Energy. Each series show the ex-
pected stylized facts, such as non normality and fat tails, and the Ljung and Box Q
shows that the null hypothesis of no autocorrelation up to the 10th lag is rejected
at 10% level of significance. The presence of long memory for the returns rrrt is
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assessed by the significant estimation of the long-memory parameter d using the
local Whittle estimator. To account for the serial correlation found in the data, we
fit a VAR model to the returns vector whit 1 Lag as suggested by selection crite-
ria. Only conventional gasoline displays time dependence in the mean equation and
there are no evidences of spillover effects between the series. Post-estimation diag-
nostic tests for the residuals of the estimated VAR(1) model confirm the presence of
strong GARCH effects, non Normality and no serial correlation up to lag 20. Based
on the above evidences we fit the several multivariate GARCH specifications to the
VAR(1) residuals. Denoting by rrrt the vector of log- returns of n oil prices and θ a
finite vector of parameters, the general form of a multivariate GARCH (MGARCH)
model is: rrrt = µµµ t (θ)+ εεε t , with εεε t = HHH1/2

t (θ)zzzt where zzzt is an i.i.d zero mean ran-
dom vector such that Var(zzzt) = IIIn, and HHH1/2

t is a n×n positive definite matrix. The

conditional mean of the process is µµµ t (θ), the matrix HHHt (θ)=HHH1/2
t IIIn

(
HHH1/2

t

)′
is the

conditional variance. The MGARCH specifications are based on different parame-
terizations of HHHt which have been proposed to capture the dynamics of volatilities
and correlations, avoiding the curse of dimensionality and to ensure positive defi-
niteness of the covariance matrix. Comprehensive reviews of multivariate GARCH
models can be found in Bauwens et al (2006) and Silvennoinen and Terasvirta
(2009). The MGARCH models estimated in the paper and their main character-
istics are summarized in Table 1. In this paper the model estimation is performed by
Maximum Likelihood methods in one step under the assumption of joint normality
of the vector of disturbances using Kevin Sheppard’s MFE Toolbox for Matlab, re-
lease 2016a. Standardized residuals of estimated volatility models are fat tailed, so
the assumption of Gaussianity of the innovations is not innocuous and reduces effi-
ciency; however Gaussian likelihood retains consistency under misspecification of
the conditional density, as long as the conditional mean and the conditional variance
are correctly specified. We estimate θ̂ by maximizing the conditional log likelihood:
LT (θ) = c− 1

2 ∑
T
t=1 ln |HHHT |− 1

2 ∑
T
t=1 rrr′tHHH

−1
t rrrt .

Table 1 MGARCH models and their characteristics

Models Dynamic Corr. Asymmetries L-Memory Spillovers

DBEKK x
BEKK x x
ABEKK x x x
AGARCH x x
CCC
DCC x
cDCC x
FI-DCC x x
FI-EDCC x x

Full results concerning the model estimations, obtained with one-step Maximum
Likelihood, are available from the authors on request. Table 2 reports the maximized
log-likelihood and information criteria for all the fitted models. ’Np’ is the number
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of estimated parameters in each model and the values in bold correspond to the best
performing models. Weather the criterion is AIC or BIC, constant conditional corre-
lation specifications are outperformed by their dynamic counterparts and symmetric
specifications are outperformed by specifications including leverage effects.

Table 2 Maximized log-likelihood and information criteria

Models Np LogLik AIC BIC

DBEKK 12 -18321 36666 36737
BEKK 24 -18218 36484 36615
ABEKK 33 -17989 36044 36240
AGARCH 33 -18011 36088 36284
CCC 12 -18202 36428 36499
DCC 14 -17695 35414 35501
FI-DCC 17 -17684 35402 35503
FI-EDCC 23 -17661 35368 35505

3 The forecasting exercise

Evaluation of volatility forecasts is particularly challenging since volatility itself
is latent and thus unobservable even ex post. In this case to compare model based
forecasts with ex post realizations a statistical or an economic loss function as well
as a proxy for the true unobservable conditional variance matrix have to be chosen.
Proxy might lead to a different ordering of competing models that would be obtained
if the true volatility were observed. To avoid a distorted outcome, the choice of an
appropriate loss function is crucial. In this paper, we follow Bauwens et al. (2016)
and use several loss functions, robust to noisy proxies. i.e. expected to provide the
same forecasts ranking using the true conditional covariance or a conditionally unbi-
ased proxy. Their definition is provided in Table 3 where Hit , for i= 1, . . . ,k denotes
each model predicted covariance matrix for day t, Σ̂t is the proxy of the conditional
covariance matrix, ι is a vector of ones, T is the out of sample length and n is the
the sample size. As a proxy for the conditional variance matrix at day t we use the
matrix of the outer products of the daily mean forecast errors, eT+1e′T+1 which is a
conditionally unbiased proxy. The forecasting ability of the set of proposed models
is evaluated over a series of 630 out-of sample predictions. We compare the one day
ahead conditional variance matrix forecasts based on the models estimated. We di-
vide the full data set into two periods: the in-sample period from 02 August 2004 to
9 January 2014 (2430 observations), the out of sample with 510 observations from
10 January 2014 to 31 December 2015, used for forecasting evaluation. Forecasts
are constructed using a fixed rolling window scheme: the estimation period is rolled
forward by adding one new daily observation and dropping the most distant obser-
vation. Models parameters are re-estimated each day to obtain tomorrow volatility
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forecasts and the sample size employed to estimate is fixed and any dependence on
the mean dynamics has been accounted for by fitting a VAR(1), so the mean fore-
casts do not depend on the models. This scheme satisfies the assumptions required
by the MCS method and the SPA test and allows a unified treatment of nested and
non-nested models. For each statistical loss function, we evaluate the significance
of loss functions differences by means of the SPA and MCS.

Table 3 Loss function

Loss function Type

Frobenius tr
[(

Σ̂t −Hit
)′ (

Σ̂t −Hit
)]

Symmetric

Euclidean vech
(
Σ̂t −Hit

)′
vech

(
Σ̂t −Hit

)
Symmetric

MSFE 1
T vec

(
Σ̂t −Hit

)′
vec
(
Σ̂t −Hit

)′
Symmetric

QLIKE log |Ht |+ vec
(
H−1

it Σ̂t
)′

ι Symmetric
Stein tr

(
H−1

it Σ̂t
)
− log

∣∣H−1
it Σ̂t

∣∣−n Asymmetric
VDN tr(Σ̂t log Σ̂t − Σ̂t logHit − Σ̂t +Hit) Symmetric

We follow Hansen (2005) and obtain the p-values of the test by bootstrap. We
implement a block bootstrap with block length equal to 2 and 10000 bootstrap sam-
ples. We find that the hypothesis of constant correlation is always rejected, as well
as the hypothesis of short memory. The hypothesis of symmetry in the volatility
dynamics is rejected in most benchmarks, and allowing for dynamic correlations
significantly improves the models’ forecasting accuracy. In the overall it appears
that the most valid specification in this application is the fractionally integrated ex-
ponential DCC model that captures well the dynamics of the variance covariance
matrix. The MCS methodology identifies a set of models with equivalent predictive
ability which outperform all the other competing models at a given confidence level
α with respect to a particular loss function. MCS determines the set of models that
at a given confidence level have the best forecasting performance. We use a block
bootstrap scheme to obtain the quantiles of the distribution. The block length boot-
strap parameter is set equal to 2 and the number of bootstrap sample used is 10000.
At the 90% confidence level the asymmetric BEKK and the fractionally integrated
exponential DCC are included in the MCS resulting from the Euclidean, Frobe-
nious, MSFE and VDN loss functions. The fractionally integrated DCC is included
in the MCS deriving from the Euclidean, Frobenious and MSFE loss functions. The
highest number of models (eight) is included for the Euclidean and Frobenious loss
functions. The most striking result is the inclusion of the fractionally integrated ex-
ponential DCC model in the MCS of four loss functions supporting the hypothesis
that the inclusion of long memory, asymmetries and time varying correlations sig-
nificantly improve forecasting accuracy.

The possible efficiency gains of using long-memory asymmetric MGARCH
models over short memory benchmarks for one-step ahead Value at Risk forecasting
for equally weighted portfolios. To this end, we focus on the models’ ability to pre-
dict the tail behavior of the returns rather than obtaining the ’best’ volatility model.
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We forecast the one day ahead Value at Risk for each of the models under com-
parison at 5%, 2.5% and 1% levels, and we assess their accuracy using statistical
back-testing. We are concerned with both the long and short positions VaR. So we
focus respectively on the left and right tail of the forecasted distribution of returns
and we assess the models joint ability to delivery accurate VaR forecasts for both
tails. To asses the accuracy of the VaRs obtained by the different models we test
weather the failure rate implied by each model is statistically equal to the expected
one. A popular back-testing procedure is based on the unconditional coverage test
of Kupiec (e.g. Giot and Laurent, 2003). The test is a likelihood ratio test, built
under the assumption that VaR violations are independent. Under the null, the test
statistic is distributed as a χ2−distribution with two degrees of freedom. Results for
the short memory constant correlation models are homogenous for short and long
VaRs, leading in all cases to rejection of the null hypothesis, regardless of the model
structure. Models with dynamic conditional correlations perform much better pass-
ing all the tests with the occasional rejection for the most extreme quantiles. Models
with dynamic conditional correlations and long memory adequately forecast VaRs
at all levels. In conclusion for equally weighted portfolios, reliable VaR forecasts
can be obtained under the assumption of conditionally normally standardized port-
folio returns, by using DCC-type of models that include long range dependence and
asymmetries in the individual volatilities.

As a general finding, fractionally integrated dynamic conditional correlation
models display good in-sample fit. Using a fixed rolling window scheme, we assess
the one-day ahead forecasting accuracy of the models with the MCS method and
the SPA test using several matrix loss functions, robust to the choice of the volatil-
ity proxy. Short memory constant correlations models are always rejected in favour
of long memory dynamic correlation models, and that the use of the latter signifi-
cantly improves forecasts accuracy from a statistical as well as a risk management
perspective.
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