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Abstract The traditional matching methods for the estimation of the treatment 

parameters are often affected by selectivity bias due to the endogenous joint 

influence of latent factors on the assignment to treatment and on the outcome, 

especially in a cross-sectional framework. In this study, we show that the influence 

of unobserved factors involves a cross-correlation between the endogenous 

components of the propensity scores and causal effects. A correction for the effects 

of this correlation on matching results leads to a reduction of bias. A Monte Carlo 

experiment supports this finding. 

Abstract I tradizionali stimatori matching dei parametri del trattamento spesso 

producono  stime affette da selettività dovuta all’influenza endogena di fattori 

latenti, specialmente nelle analisi cross-section. In questo studio, mostriamo che 

l’influenza di fattori non osservabili mette in correlazione la propensione a 

sottoporsi al trattamento e gli effetti causali prodotti da quest’ultimo. La correzione 

delle stime  matching per gli effetti di questa correlazione consente di ridurre la 

distorsione dovuta alla selettività. Questo risultato è supportato dalle evidenze di 

una serie di esperimenti Monte Carlo. 
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1 Introduction 

A typical assumption of models for treatment effects is based on the hypothesis that 

the decision of a subject to receive a certain treatment depends on the difference in 

the outcomes potentially gained by the subject under the two alternative regimes of 

treatment and control, respectively (see, e.g., Winship and Morgan, 1999). Starting 

from this assumption, the decision of a subject to undergo the treatment is 

endogenous with respect to the potential outcome. The non-random selection of the 

units into the treatment regime, due to the endogeneity of treatment, involves that 

important unobserved covariates influence jointly the propensity of a subject to 

undergo the treatment and the outcomes. As a consequence, matching estimation of 

the treatment effect, based on the comparison of treated and untreated units with the 

same propensity score, is biased (e.g. Austin, 2011). 

In this context, a natural solution, as the detection of new statistically significant 

covariates in the treatment choice equation, could not reduce the bias; in fact, 

Heckman and Navarro-Lozano (2004) show that this is the case when these 

variables are not exogenous with respect to the outcome.  

In this study, we try to circumvent the problem of misspecification of the 

selection equation in matching methods based on propensity score, assuming that the 

potentially omitted endogenous factors can be represented by a stochastic 

component correlated with the causal effects of the treatment. This implies that the 

causal effect of each subject is correlated with the causal effect of another subject 

with similar propensity score; moreover, the stochastic component is autocorrelated, 

as causal effects relative to similar propensity scores will be more similar. In order 

to assess this endogenous relationship, we model the causal effects adopting a sort of 

state-space model (see, for example, Harvey, 1990), where a common latent factor is 

detected in correspondence of the endogenous stochastic component of the 

propensity score sorted in an ascending (or descending) order. State-space models 

are generally adopted for time series; the extension to this framework is simple, 

substituting the ordering of the observations in terms of dating with the order in 

terms of increasing propensity score. The predictions of these components are used 

as correction terms in the matching procedure. The estimation method proposed, 

called State-Space Corrected Matching (SSCM), is based on the Kalman filter (see 

Harvey, 1990) and possesses the nice characteristic of not imposing conditions of 

identification of the probability to undergo the treatment as in the randomized 

experiments.  

We verify the performance of this method comparing its bias with respect to the 

bias occurring with traditional propensity score matching (cf., among others, 

Rosenbaum and Rubin, 1983) by Monte Carlo experiments. In the Monte Carlo 

experiment we generate data in a cross-sectional context, adopting a two-regime 

model whose data generation process (DGP) is affected by endogeneity. Applying 

our correction method, we obtain a marked reduction of bias in the estimated 

average treatment effect for the treated (ATT) in comparison with the traditional 

Propensity Score Matching estimator (PSME, Rosenbaum and Rubin, 1983).  
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In next Section we describe this new procedure, whereas in Section 3 we show 

the results of the Monte Carlo experiments comparing the performance of SSCM 

estimation method and traditional PSME in terms of prediction of the ATT 

parameter. 

2 The Model  

In this paper we insert several novelties with respect to the present literature. The 

most relevant is the individuation of an autoregressive process that characterizes, 

jointly, individual propensity scores and causal effects. As a consequence, another 

important novelty is given by the correction term based on the estimation of a State-

Space model in which the endogenous component common to causal effects and 

propensity scores is specified by a “measurement” equation and a “transition” 

equation, respectively. In addition, in our model it is not necessary to reproduce 

conditions of identification of the probability to undergo the treatment such as in a 

randomized experiment.   

In this analysis, we start to consider the potential outcome gained by choosing 

one of the two treatment status as a relevant (endogenous) determinant of the 

decision undergoing the treatment. In particular, we specify the model assuming that 

the difference between the potential (expected) outcomes, y1i and y0i, obtainable, 

respectively, under the regimes Ti =1 (if the subject belongs to the treatment group) 

and Ti=0 (if the subject belongs to the comparison group), determines, at least in 

part, the choice of the regime.  

We specify a Probit (or Logit) model, where the (latent) propensity to undergo 

the treatment of the i-th subject, T
*
i, depends linearly on the covariates in Z: 

 

iii vT βz'*                  (1) 

   

where z’i is the i-th row of the matrix Z,  is a vector of unknown coefficients and vi 

is a zero-mean random disturbance with unit variance. If T
*

i  > 0, Ti = 1 ( the subject 

is undergone to treatment), otherwise Ti = 0 (the subject is not undergone to 

treatment).  

Assuming that the assignment to treatment is endogenous, T
*
i will depend on the 

causal effect i = y1i – y0i. 

Formally, we can explain autocorrelation and endogeneity specifying our model 

similarly to a generalized Roy model (e.g., Carneiro et al., 2003). In doing this, we 

add to the above selection equation (Eq. 1) two equations that specify the outcome 

of treated and untreated subjects, as follows: 

  

    iii uy 111   if Ti = 1;     (2a) 

    iii uy 000     if Ti = 0;          (2b) 
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In Eqs. (2a) and (2b) 1i and 0i are the expected outcomes, respectively, of 

treated and untreated subjects, depending on the decision to undergo the treatment 

(T = 1) or not (T = 0). The error terms u1i and u0i are normally distributed with zero 

mean and variances equal to 1 and 0 respectively. The covariances 1v and 0v of 

the disturbances of both outcome equations, u1i and u0i, with the disturbances of the 

selection equation (1), vi, can be different from zero as a consequence of 

endogeneity. The covariances 1v and 0v are measurements of the endogeneity of 

the propensity to undergo the treatment, T
*
I with respect to the outcome gained 

under   T =1 and T = 0.  

Correlation between outcomes and propensity scores, as well as the 

autocorrelation of the causal effects, may be specified starting from the definition of 

causal effects, i. Hence, subtracting Eq. (2b) from Eq. (2a), we obtain: 

   

i = y1i – y0i = 1i – 0i + (u1i – u0i)     (3) 

 

Imposing a linear relationships between the error terms of the outcome equations 

and the selection equation, we have: 

iivi vu 111        (4a) 

iivi vu 000          (4b) 

 

where 1i and 0i are i.i.d. disturbance with zero mean. By substituting (4a) and 

(4b) into Eq. (3): 

 

i = y1i – y0 = 1i – 0 + ( 1v –  0v)vi + ( 1i – 0i)   (5) 

 

Putting 1i – 0i= i ( 1v –  0v)vi =  vi and ( 1i – 0i) = i, Eq. (5) can be 

written as a measurement equation of a state-space model, as follows (cf., among 

others, Harvey, 1990): 

 

  i - i  vi + i        (6) 

 

In Eq. (6), i is a vector of n×1 disturbance terms uncorrelated across i. The 

variable vi can be considered as the state variable whose elements are not 

observable, but are assumed to be generated by a first-order Markov process, such as 

the following transition “equation”: 

  

vi = vi-1 + i        (7) 

 

The dependent variable of Eq. (6), i - i , may be considered as the stochastic 

component of the causal effect i, endogenous with respect to the decision to 

undergo to treatment. Starting from this result, the selectivity effect due to the 

endogeneity of the decision to undergo the treatment may be corrected by estimating 

vi in Eq. (6), and using the predicted values, iv̂ , as a correction term in the 

matching estimation of the causal effects. In doing this, a preliminary estimation of 



Bias Reduction in a Matching Estimation of Treatment Effect 5 
causal effects i is obtained at a first stage by applying a propensity score matching 

procedure. Then, at a second stage, matching is replicated using the corrected 

outcomes y1i - iv̂  so as to obtain the corrected causal effects i - iv̂ iˆ . We call 

this estimator the State-Space Corrected Matching (SSCM) estimator. 

3 Monte Carlo Experiment  

We propose a Monte Carlo experiment to compare the performance of the SSCM 

procedure with that of the PSME in terms of bias reduction under both the 

conditions of heterogeneous and homogeneous covariates between regimes. For this 

purpose, we generate 500 data sets of 2,000 units from the Two-Regime model 

above in Eqs. (1), (2a) and (2b). The exogenous covariates Z are generated in order 

to reproduce the very frequent condition of heterogeneity in observed covariates 

between treatment and comparison group, and the condition of homogeneity in the 

observed covariates between regimes. We consider two different DGPs, with and 

without endogeneity, so as to fix two distinct set of population parameters under the 

condition of endogeneity and exogeneity, respectively. 

Table 1 summarizes the estimated ATT values obtained by embedding different 

endogeneity conditions into the DGP. Computing the bias with respect to the 

population ATT value (set equal to 5), the SSCM estimator performs better than the 

PSME procedure. The bias resulting from the application of SSCM is markedly 

smaller than the one resulting from PSME. 

 
Table 1: Simulation Results. Estimated ATT parameters. Population ATT value = 5. Generated sample 

size:  n = 2000. No of reps. 500. Simulated endogeneity by setting 1v and 0v. 

  SSCM PSME 

Endogeneity ATT  95% CI  ATT  95% CI 

1v 5.4; 0v 2.4 4.974 4.930 5.018 7.996 7.970 8.022 

1v 5.4; 0v -2.4 4.320 4.279 4.362 6.814 6.782 6.846 

1v 5.4; 0v 0.8 4.983 4.939 5.027 7.571 7.534 7.607 

1v 5.4; 0v -0.8 4.729 4.688 4.770 7.572 7.536 7.608 

       
 

% BIAS* St.Dev.  t**  % BIAS*  St.Dev. t** 

1v 5.4; 0v 2.4 -0.51% 0.022 222.160 59.92% 0.013 607.170 

1v 5.4; 0v -2.4 -13.59% 0.021 205.720 36.28% 0.016 414.280 

1v 5.4; 0v 0.8 -0.35% 0.022 222.480 51.41% 0.018 410.660 

1v 5.4; 0v -0.8 -5.42% 0.021 225.710 51.45% 0.018 412.000 
Note: *   % of Bias [(Est. ATT-5)/5]%; ** t-ratio: ATT/St.Dev.) 
 

We can observe, in particular, that, if we reproduce the “more common” 

endogeneity conditions (characterized by covariances, 1v and 0v, with the same 

sign) in the DGP, the confidence intervals obtained by the SSCM estimates include 

the population ATT value. In the less frequent case, in which the propensity to 
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undergo the treatment is endogenously affected in the two regimes with opposite 

sign, confidence intervals of the SSCM estimates do not include the population 

parameter. However, the percentage of bias of SSCM estimation does not exceed 

15% in absolute value.  

4 Conclusion  

The aim of this study is to improve the propensity-score matching approach so that 

estimation results do not overly suffer from the influence of the endogeneity of 

treatment. We show that, applying a state-space model, we can estimate the 

endogenous component of the causal effects, so as to use the result of this estimate 

as a correction term. In particular, the results of the Monte Carlo experiments here 

reported confirm that, simulating endogeneity of the selection into treatment in a 

Two-Regime model, the predicted components of causal effects can be successfully 

used, at a second stage of the estimation procedure, to correct the matches outcomes.  

As the results of our Monte Carlo analysis show, this method allows us to reduce 

the selectivity bias in matching without imposing, to the data or the model, any 

restriction usually adopted to reproduce a condition comparable to the 

randomization. At this stage of our research, we have deepened the characteristics of 

the SSCM estimator only through Monte Carlo experiments. However the inferential 

properties must still be investigated. This will be the next aim of this research.  
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