
Simultaneous unsupervised and supervised
classification modeling for clustering, model
selection and dimensionality reduction

Modellizzazione simultanea di metodi di
classificazione non-supervisionata e
supervisionata per classificare, validare il
modello e ridurre la dimensione dei dati

Mario Fordellone and Maurizio Vichi

Abstract In the unsupervised classification field, the choice of the number of clus-
ters and the lack of assessment and interpretability of the final partition by means
of inferential tools denotes an important limitation that could negatively influence
the reliability of the final results. In this work, we propose to combine unsupervised
classification with supervised methods in order to enhance the assessment and inter-
pretation of the obtained partition, to identify the correct number of clusters and to
select the variables that better contribute to define the groups structure in the data.
An application on real data is presented in order to better clarify the utility of the
proposed approach.
Abstract Nella classificazione non supervisionata, la scelta a priori del numero
ottimale di gruppi da considerare e la mancanza di interpretazioni inferenziali, rap-
presenta un grosso limite per questi modelli. In questo lavoro, proponiamo la combi-
nazione di modelli di classificazione non-supervisionata e supervisionata per iden-
tificare il numero ottimale di gruppi da considerare, selezionando le variabili che
incidono in modo significativo sulla partizione trovata. E’ prevista un’applicazione
su dati reali.
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1 Introduction

In the unsupervised classification techniques, clusters of homogeneous objects are
detected by means of a set of features measured (observed) on a set of objects with-
out knowing the membership of objects to clusters. In these applications the aim is
to discover the heterogeneity structure of the data. Often, techniques based on sepa-
rability and homogeneity criteria of the groups are used, giving a priori the number
of groups [9].

Conversely, supervised classification is based on the idea to forecast the mem-
bership of new objects (output) based on a set of features (inputs) measured on a
training set of objects for which the membership to clusters is known. Therefore,
in these applications the aim is to generalize a function or mapping from inputs to
outputs which can then be used speculatively to generate an output for previously
unseen inputs [4, 6].

In this work, we propose a clustering algorithm based on the use of supervised
classification modeling. In particular, the approach consists in the combination of
K-Means (KM) and Logistic Regression (LR) modeling in order to find the correct
number of clusters, select the most important variables and have an assessment on
the partition identified through KM. An application on real data is finally proposed.

2 K-Means and Logistic Regression modeling into a clustering
algorithm

In unsupervised classification modeling we are not interested in prediction, because
we do not have an associated response variable y [5] like in a supervised classifica-
tion model. The proposal of this paper consists in the combination of the unsuper-
vised (i.e., K-Means (KM)) and supervised classification (i.e., Logistic Regression
(LR)) approaches, where the latter, aiming to evaluate and to improve the former
with adding data structure information. For simplify, we will call this approach K-
Means - Logistic Regression (KM-LR). In particular, KM-LR is composed by the
following principal steps:
Given the n×J data matrix X, for K = 2, . . . , Kmax, where Kmax is the maximum
number of clusters the researcher thinks the data might have, the algorithm works
as follows:

1. let gK be the unknown categorical membership variable which is estimated by
using KM on the n-dimensional multivariate variables in X thus minimizing the
objective function

∥∥X−UX̄
∥∥2 [7];

2. gK is used as response variable of the LR model with explanatory variables x; LR
is applied on gK for estimating the probabilities for its K −1 response categories
πk (x), and to estimate the probabilities for its baseline category π0 (x), here fixed
k = 1 [1];
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3. if in second step some LR coefficient are not statistically significant, then we
exclude the corresponding variables and we repeat from the step 1, otherwise
K = K +1.

Stopping rule: the algorithm continues until when the Kmax is reached. At the end,
the optimal K is identified, together with a reduced set of statistically significant
variables and a set of inferential tools to assess the quality of the partition.

In this way, through the analysis of the LR results (e.g., explained variance, pa-
rameters significance, residual variance, etc.) we have an evaluation of the partition
obtained by KM. In fact, a good performance of the LR model on the response vari-
able derived by the KM outcome, means that the variables included in the model
well-explain the groups structure in the data. Moreover, through the LR coefficients
analysis we can see which variables contribute most to identify the groups struc-
ture and to what extent they do it (then, analyzing statistical significance, estimates
value, and sign of the coefficients).
In the next section, an application on real data is presented.

3 Application on real data

In this section a real data application of K-Means - Logistic Regression (KM-LR)
is presented. The data set named Wine Recognition Data, is available at the UCI
repository website (http://archive.ics.uci.edu/ml/). It is the result of the chemical
analysis of wines grown in an Italian region, derived from three different cultivars.
The 13 constituents were measured on 178 types of wine from the three cultivars:
59, 71 and 48 instances are in class one, two and three, respectively.

In the analysis we have tried to select the optimal number of clusters without
considering the a priori information that K = 3, and using the KM-LR algorithm, i.e.
through the maximization of chi-squared test computed on the partitions obtained
by K-Means (KM) and Logistic Regression (LR). For comparison purpose, other
two approaches have been used. The procedure has been random repeated 50 times
from 2 to 10 clusters. In Table 1 have been reported the results obtained by chi-
squared (first column), Gap-method proposed by Tibshirani [10] (second column),
and Calinski and Harabasz [3] criterion (third column).
Thence, the best performance has been obtained by KM-LR approach, where the
optimal number of clusters has been captured 36 times on 50 (72%). Whereas, KM-
Gap-method has been obtained worst performance, since the optimal number of
clusters has been captured 5 times only (10%). Then, the KM-LR approach seems
to reduce the effect of the local minima problem of the KM algorithm [2], which is
more relevant in the case no modification of the KM partition is proposed as in the
KM-Gap-method, and KM-Calinski-Harabasz.

In Table 2 the estimation results of LR applied on the groups labels identified
through KM model as response variable and including only variables with signifi-
cant coefficient as predictors are shown.
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Table 1 Optimal K selection from 2 to 10 clusters on the 50 random starts

Chi-squared Gap-method Calinski-Harabasz
K Count Percent Count Percent Count Percent
2 0 0.00 0 0.00 0 0.00
3 36 72.00 5 10.00 22 44.00
4 10 20.00 0 0.00 5 10.00
5 2 4.00 0 0.00 3 6.00
6 2 4.00 0 0.00 3 6.00
7 0 0.00 2 4.00 0 0.00
8 0 0.00 1 2.00 0 0.00
9 0 0.00 15 30.00 6 12.00
10 0 0.00 27 54.00 11 22.00
Total 50 100.00 50 100.00 50 100.00

Table 2 Estimation results obtained by Logistic Regression applied on the K-Means partition in-
cluding only predictors with significant coefficient

Estimate SE t-Stat p-Value
Const. 2.0169 0.0296 68.2200 2.66E-122
Alc -0.2306 0.0465 -4.9579 1.76E-06
Mal -0.0865 0.0382 -2.2674 2.47E-02
Ash -0.1261 0.0438 -2.8778 4.54E-03
AAsh 0.1022 0.0444 2.3041 2.25E-02
Mg -0.1264 0.0353 -3.5808 4.51E-04
Phe 0.0740 0.0617 1.1993 2.32E-01
Fla -0.2012 0.0786 -2.5597 1.14E-02
NPhe -0.0331 0.0397 -0.8326 4.06E-01
Pro 0.0885 0.0417 2.1243 3.51E-02
Col -0.0806 0.0516 -1.5634 1.20E-01
Hue 0.0970 0.0474 2.0492 4.20E-02
ROD -0.0832 0.0577 -1.4418 1.51E-01
Pro -0.3627 0.0498 -7.2806 1.31E-11
178 observations, 164 error degrees of freedom
Dispersion: 0.138, AICc=160.34, BIC=185.95
R-Squared Adj.=0.8135
F-statistic: 93.70, p-value=5.19E-55

From Table 2 we can note that the model shows a good performance, with about
80% of the total variance explained. In the model the variables Ash, Alcalinty of Ash,
Total phenols, Nonflavanoid phenols, Proanthocyanins, OD280-OD315 of diluted
wines, have been excluded because are not statistically significant at the 1% level.

Tables 3 show (i) the confusion matrix between real data partition and KM par-
tition (i.e., KM applied on the complete data) and (ii) the confusion matrix between
real data partition and KM-LR partition.

The misclassification Rate and the Adjusted Rand Index [8] applied on the left
table (i.e., real partition versus KM partition) are equal to 0.3708 and 0.2977, re-
spectively; whereas, the same indices applied on the right table (i.e., real partition
versus KM-LR) are equal to 0.1818 and 0.5465, respectively.
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Table 3 Confusion matrix between: (i) real data partition and K-Means partition; (ii) real data
partition and K-Means - Logistic Regression partition

K-Means K-Means - LR
Real C1 C2 C3 Total Real C1 C2 C3 Total
C1 32 5 22 59 C1 51 3 5 59
C2 9 61 1 71 C2 3 66 2 71
C3 2 27 19 48 C3 0 12 36 48
Total 43 93 42 178 Total 54 81 43 178

Moreover, applying LR on the real data partition we obtain the following confu-
sion matrix between the real partition and that one fitted by LR (Table 4).

Table 4 Confusion matrix between real data partition and Logistic Regression partition

Logistic Regression
Real C1 C2 C3 Total
C1 15 44 0 59
C2 6 62 3 71
C3 2 38 8 48
Total 23 144 11 178

Also in this case the performance of KM-LR is better. In fact, the misclassifica-
tion Rate and the Adjusted Rand Index applied on Table 4 are equal to 0.5225 and
0.0247, respectively. In Table 5 the performances obtained both LR applied on real
partition and KM-LR are shown.

Table 5 Comparison between LR and KM-LR

Logistic Regression K-Means - LR
F-Statistic 14.5000 93.7000
p-value 0.0002 5.19E-55
R-Squared Adj. 0.0710 0.8135
AICc 403.3673 160.3400
BIC 409.6623 185.9500

We can note that the diagnostics indices obtained by KM-LR are very better with
respect to those obtained by the LR application on the real data partition. Further-
more, note that in the application of LR on the real data partition, only the variable
Color intensity has obtained a statistically significant coefficient and then, only this
variable has been included in the model.
In Figure 1 the distributions of the three KM-LR clusters on the reduced set of vari-
ables are shown.
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Fig. 1 Boxplots of the three
KM-LR clusters distributions
represented on the variables
included in the model

Alcohol MalicAcid Mg Flavanoids ColorIntensity Hue Proline

-2

0

2

Cluster 1

Alcohol MalicAcid Mg Flavanoids ColorIntensity Hue Proline

0

2

4

Cluster 2

Alcohol MalicAcid Mg Flavanoids ColorIntensity Hue Proline

-2

0

2

Cluster 3

4 Concluding remarks

In the unsupervised classification approaches, the choice of the number of clusters
and the lack of assessment of the final partition are crucial issues that could nega-
tively affect the reliability of the results. In this work we propose an algorithm that
combines K-Means (KM) and the Logistic Regression (LR) modeling in order to
have an evaluation of the partition identified through KM, assess the correct num-
ber of clusters (clustering) and verify the selection of the most important variables
(model selection), removing in the model the non-significant variables (dimension-
ality reduction). In this way, we have a parsimonious set of variables that defines
the best partition of data. Thus, the methodology seems promising, however, in a
following work, we wish to better discover and assess, by an extensive simulation
study, the performances of the proposed methodology.
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