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Abstract Network data often come in the form of actor-event information, where
two types of nodes comprise the very fabric of the network. Examples of such net-
works are: people voting in an election, users liking/disliking media content, or,
more generally, individuals - actors - attending events. Interest lies in discovering
communities among these actors, based on their patterns of attendance to the consid-
ered events. To achieve this goal, we propose an extension of the model introduced
in [5]: our contribution injects covariates into the model, leveraging on parsimony
for the parameters and giving insights about the influence of such characteristics on
the attendances. We assess the performance of our approach in a simulated environ-
ment.
Abstract I dati network vengono spesso strutturati sotto forma di informazioni
attore-evento, ovvero network dove esistono due tipologie di nodi. Alcuni esempi
sono: persone che votano durante le elezioni, utenti che esprimono preferenza o
meno su contenuti multimediali, o, più in generale, individui - attori - che parte-
cipano a eventi. L’interesse risiede nel rilevare la presenza di gruppi fra questi
attori, cluster che si differenzino per la propensione nel partecipare agli eventi in
esame. A tale scopo, proponiamo un’estensione del modello introdotto in [5]: il nos-
tro contributo contempla la presenza di covariate nel modello, sfruttando quindi un
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approccio parsimonioso e dando potenziali informazioni sull’effetto delle caratter-
istiche considerate. Valutiamo la performance del nostro approccio in un ambiente
simulato.

Key words: Bayesian inference, bimodal network, MCMC, probit regression

1 Introduction
Network data are becoming increasingly available and a propelling force in the
pursuit of new methodological approaches devoted to analyze the complexity be-
hind interactions among units in a system. A review about the methods and models
adopted in this research area can be found in [3]. Some of these data come in the
form of individuals attending events, or, more generally, a network structure where
two different types of nodes exist: these are also called two-mode networks, bimodal
networks, or affiliation networks [6, Chapter 8]. We focus on those data describing
people’s behavior with respect to attending or not a set of events, and we aim to
discover if communities exist within the network itself, communities that differ in
patterns of preferences to attend each event. A recent approach to do model-based
clustering in this context was proposed by [5]: motivated by a dataset about terror-
ists participating to meetings and bombings, the authors introduced a mixture model
for network data called manet, where each unit is allowed to potentially belong to
more than one community. We build on their contribution and propose an extension
of their model, in order to accomodate for external information about the network,
in the form of covariates describing characteristics of the units or the events.

The main contributions of the paper are:
• extending manet [5] by introducing covariates into the model formulation;
• eliciting how some existing regression techniques can be used in the covariates-

adjusted manet approach;
• providing results on a simulation study about the performances of our proposed

model.
The remainder of the manuscript is organized as follows: in Section 2, first we

outline manet original formulation, to familiarize the reader with the model’s struc-
ture, and then we introduce the proposed extension; in Section 3, performance of
manet with covariates adjustment is explored in a simulated environment; finally,
in Section 4, we discuss the contribution and hint at future research trajectories.

2 Covariates adjustment for manet
Network data are organized in an n× d matrix Y of observations yi j, collecting
the attendances of i = 1, . . . ,n units - also called actors - to j = 1, . . . ,d events.
Each realization yi j comes from a binary random variable, with yi j = 1 meaning
individual i attends event j, and zero otherwise. We want to cluster these n actors
based on their attendances via a model-based framework, and mixture models prove
to be a suitable approach to achieve the task [1]. In the traditional setting, clusters
are mutually exclusive and have (prior) sizes given by ααα = (α1, . . . ,αK). Usually,
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two conditions hold: (i) αk ≥ 0, for each k; (ii) ∑
K
k=1 αk = 1. Mixture models also

have a hierarchical representation, attainable after introducing a unit-specific latent
variable zi = (zi1, . . . ,ziK): if actor i belongs to cluster k, the vector is full of zeros
except for the k-th element zik = 1. Given the binary nature of response variables
yi j, for each actor i = 1, . . . ,n we have

ααα ∼ Dirichlet(ααα;a1, . . . ,aK) (1)
zi ∼ Multinomial(zi;α1, . . . ,αK)

yi|(zi,πππ) ∼
K

∏
k=1

( d

∏
j=1

π
yi j
ki j (1−πki j)

1−yi j

)zik

for some hyper-parameters (a1, . . . ,aK); yi = (yi1,yi2, . . . ,yi j, . . . ,yid) is the atten-
dance profile of the i-th actor to the d events, which we assume - given zi - to be
independent for all j, j′ = 1, . . . ,d and j 6= j′. Vector πππ collects probabilities of at-
tendance πki j of a saturated model specification.

In many cases, one is interested in groups that are not mutually exclusive, allow-
ing an actor to be allocated simultaneously to potentially more than a single cluster.
We build on the approach suggested by [5], where a Bayesian multiple allocation
model for network data (manet) is proposed. In manet, the hierarchical model
in Equation 1 is modified by relaxing conditions on the cluster sizes ααα and allo-
cation vectors {zi}, allowing each actor to potentially belong to any number of the
K clusters. The number of all possible group-allocating configurations is equal to
K? = 2K . Instead of working with the latent variables zi, a new K?-dimensional
allocation vector z?i is defined for each i. This vector satisfies ∑

K?

h=1 z?ih = 1, and a 1-
to-1 correspondence exists between zzzi, which allocate actors into overlapping parent
clusters, and zzz?i , which allocates actors into non-overlapping heir clusters. To this
re-parametrization corresponds, in manet, the following hierarchical model

ααα
? ∼ Dir(ααα?;a1, . . . ,aK?), (2)

z?i |ααα? ∼ Multinom(z?i ;α
?
1 , . . . ,α

?
K?),

yi|z?i ,πππ ∼
K?

∏
h=1

d

∏
j=1

[
Ber

(
yi j;π

?
hi j
)]z?ih

.

with prior πki j ∼ Beta(πki j;b1,b2), and (b1,b2) suitable hyper-parameters. For ex-
ample, when K = 2, actor i may be assigned:

• to none of the two clusters, zi = (0,0), corresponding to z?i = (1,0,0,0);
• only to the first parent cluster, zi = (1,0), corresponding to z?i = (0,1,0,0);
• only to the second parent cluster, zi = (0,1), corresponding to z?i = (0,0,1,0);
• both of them zi = (1,1), corresponding to z?i = (0,0,0,1).

The advantage of working with re-parametrization in Equation 2 is that {πhi j} are
not additional parameters to be sampled, but probabilities of attendances produced
by πππ . For each actor i and event j, π?

hi j are computed via a function ψ
(
πππ ·i j,zi

)
,

so that we obtain π?
hi j by looking at which parent clusters originated h, through

the vector zi, and combining their corresponding probabilities (π1i j, . . . ,πKi j). We
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consider ψ(·) ≡ min(·). For the simple case where K = 2, an actor i belonging
to both clusters, zi = (1,1), deciding whether to attend an event j or not, will do
so with probability π?

hi j = ψ(π1i j,π2i j) = min(π1i j,π2i j). When zi = (0,0), π?
hi j = 0.

The saturated manet demands inference on (K×n×d) probabilities of attendance,
where each πki j has only one observation to update the prior information with. In [5]
authors prescribe a more feasible formulation for manet by setting πki j to be only
event- and cluster-specific, defining thus a quasi-saturated model with πki j ≡ πk j.

In this manuscript, we propose an extension of manet which introduces parsi-
mony by exploiting covariates information. These covariates could be characteristic
related to an actor, such as, gender, age, etc, or features of an event, i.e. type of
event, date, duration, and so forth. We define xi· = (xi1, . . . ,xil , . . . ,xiL) to be the
L-dimensional vector of covariates for actor i, and w j· = (w j1, . . . ,w jq, . . . ,w jQ)
the Q-dimensional vector of covariates for event j. For simplicity, we assume the
non-categorical covariates to be standardized, i.e. zero mean and unit variance. Co-
variates enter the model through a link function as in the generalized linear models
context [4]. We add the following layers to the Bayesian hierarchical formulation

µµµk ∼ N(µk;0,σ2
µ), βββ k ∼ NL(βββ k;000L,σ

2
β

IL), γγγk ∼ NQ(γγγk;000Q,σ
2
γ IQ),

ηki j = µk +
L

∑
l=1

βklxil +
Q

∑
q=1

γkqw jq,

πki j
(
xi·,w j·

)
= g−1(ηki j),

where: ηki j is the linear predictor; g−1 is the normal distribution’s cumulative func-
tion Φ(·), leading to a probit formulation; N(·) is the normal distribution’s density
function, with subscripts denoting the dimension of vector or matrix; (σ2

µ ,σ
2
β
,σ2

γ )

are hyper-parameters. Notice that, for g−1 set equal to the identity function and only
{µk j} as parameters in the linear predictor, we revert back to the quasi-saturated
manet. Once the probabilities πki j are obtained from linear predictors ηki j, the
corresponding heir parameters π?

hi j can be computed by means of the combining
function ψ(·), exactly as in the formulation without covariates in [5]. Computing
linear predictors requires regression coefficients and intercepts to be sampled, and
this can be done separately for each cluster as they are independent. However, when
an actor i belongs to multiple clusters, it is not univocally defined to which poste-
rior distribution among the K sets of (µk,βk1, . . . ,γkQ) its likelihood term will con-
tribute to. We follow the prescription of [5] to disentangle this issue. We introduce
auxiliary variables s(zzzi,πππ) = ski j, such that, for a fixed (i, j) we have: ski j = zik if
∑

K
k=1 zik = 1, whereas, if ∑

K
k=1 zik > 1 then sssi j· is a K-dimensional vector of zeros,

except for sikmin, j = 1. Here kmin denotes the index corresponding to the parent clus-
ter having the lowest value of ηki j, for a fixed event j and actor i. After introducing
the auxiliary variables {ski j} into the model, the complete-data likelihood becomes

LY,Z(µµµ,βββ ,γγγ;S) =
K

∏
k=1

d

∏
j=1

n

∏
i=1

{[
Φ(ηki j)

]yi j
[

1−Φ(ηki j)

]1−yi j
}ski j

. (3)
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Equation 3 is similar to the likelihood of a binary regression model with probit link
function. Also, Equation 3 highlights that, in general, the model can be cast in a
regression framework and thus, potentially, other regression techniques and/or ex-
tensions can be further exploited to refine manet. An outline of the general idea
behind the MCMC implementation is: (i) first, all the observations Y are stacked
into a vector ỹ of length (n ·d)×1; (ii) for each k, a vector ỹk is obtained by filtering
ỹ with rule ski j = 1, and then a Bayesian probit regression is performed. For this last
part, we refer to the work of [2], where the authors discuss a hierarchical Bayesian
formulation of the probit model and provide technical details in the manuscript’s
Appendix. The MCMC algorithm for manet with covariates adjustment is imple-
mented in an R script, and code is available upon request.

3 Simulation study
We generate 50 independent datasets from a probit model, with K = 2 overlapping
groups; sample size and number of events are fixed to n = 100 and d = 15. Covari-
ates are: (i) actor-specific categorical covariate with two levels, same proportions
for both levels (50/100), coded with a single binary variable xi1; (ii) event-specific
categorical covariate with three levels, same proportions for the three levels (5/15),
coded with two binary variables w j1 and w j2. For each replicated dataset, we run: (i)
our algorithm, labelled manet+cov; (ii) manet, with the homonymous R pack-
age. Number of MCMC iterations is set to 10000 with burn-in window equal to
4000. Results are numerically reported in terms of Adjusted Rand Index and mis-
classification error rate, averaged across the replicated datasets for both models,
showed in percentage. Adjusted Rand Index (ARI) is a measure in the range [0,1],
with higher values indicating better performance. The misclassification error rate
(MER) quantifies the proportion of wrongly allocated units, with smaller values
indicating better performance. In terms of classification accuracy, manet and its
covariates-adjusted extension attain comparable ARI and MER, with results slightly
in favor of manet+cov: more specifically, average ARI is 79.06% for manet and
81.26% for manet+cov, while average MER is 8.92% for manet and 8.10%
for manet+cov. This corroborates the idea of employing covariate information
if available, as the performance of the parsimonious manet+cov is on par with the
more flexible quasi-saturated manet. Results for manet+cov are also visualized
(see Figure 1) through posterior distributions of the regression coefficients, plotted
after aggregating chains from all the independent datasets. Despite the additional
uncertainty introduced by combining MCMC samples from different datasets, the
posterior distributions show good behavior in terms of location and scale: all the
densities in Figure 1 are centered around the true values used to generate data, and
exhibit limited dispersion.

4 Conclusions
We have proposed an extension of the model formulated in [5], in order to accomo-
date for additional information in the form of actor and/or event covariates. By cast-
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Fig. 1 Posterior distributions for the regression coefficients of manet+cov, computed after ag-
gregating all the independent datasets’ chains. True values are depicted as vertical lines in the
plots, corresponding to parameters for: intercept, µµµ = (0.1,−0.3); covariate xi1, βββ ·1 = (−0.5,0.9);
covariate w j1, γγγ ·1 = (1.2,−0.8); covariate w j2, γγγ ·2 = (−0.8,1.2).

ing part of the inference problem into a binary regression framework, we highlighted
the link between regression techniques and covariates-adjusted manet, paving the
way for more interesting future refinements of the model - such as mixed effects,
regularized regression, and so forth. We explored the performance of our proposed
algorithm in a simulated environment, which shows appreciable preliminary outputs
and encouraging results.
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