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Abstract We present a general class of covariate-adjusted response-adaptive (CARA) designs introduced
in [1], which is based on a new functional urn model. We show strong consistency concerning the allocation
probability and the proportion of subjects assigned to the treatment groups, in the whole study and for
each covariate profile, allowing the distribution of the responses conditioned on covariates to be estimated
nonparametrically. We also establish joint central limit theorems for these quantities and the joint sufficient
statistics, which allow construction of inference procedures.
Abstract In questo lavoro presentiamo una classe generale di disegni covariate-adjusted adattivi alla
risposta (CARA) introdotti in [1], che è basato su un nuovo modello d’urna funzionale. Inoltre, dimostri-
amo la forte consistenza della probabilità di allocazione e della proporzione di soggetti assegnati ai gruppi
dei trattamenti, nell’intero studio e per ciascun valore delle covariate, permettendo alla distributione delle
risposte condizionate alle covariate di essere stimata in maniera non parametrica. Infine, abbiamo stabilito
alcuni teoremi centrale del limite congiunti di queste quantità e delle statistiche sufficienti, che permoettono
la costruzione di procedure inferenziali.
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1 Introduction

In CARA designs the patients in the trial are randomly assigned to d ≥ 2 treatment groups with an allocation
probability that depends on the current patient covariate profile and on the previous patients’ covariates,
allocations and responses (e.g. see [3]). In this framework, it is desirable that the proportion of subjects of
each covariate profile assigned to the treatments converges to a desired target, defined as a function of the
response distribution conditionally on the covariates.
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Ideally, the analysis of the ethical and inferential properties of the experimental designs should be based
on theoretical results concerning the asymptotic behavior of the allocation proportion and adaptive esti-
mators, and none of the previous work on CARA designs is able to provide such results. In fact, since
the allocation and the estimation process depend on both the responses and the covariates, CARA designs
are very complex to be formulated in a rigorous mathematical setting. Two papers, in particular, formal-
ize CARA in a rigorous mathematical framework. The first of these is the groundbreaking paper of [4], in
which consistency and second-order asymptotic results concerning both adaptive estimators and allocation
proportions have been proved for a very wide class of CARA designs. In the second [2], compound optimal
design theory was used to find target allocations of interest, and these target allocations are attained using an
accelerated biased coin design.

Here we present a class of CARA designs introduced in [1], in which the allocation probability may
depend on nonparametric estimates of the response distribution, and the patients’ covariate profiles are not
identically distributed.

2 The model

For any n ≥ 0, let Yn = (Y 1
n , ..,Y

d
n )
> be a vector of functions, with Y j

n : τ 7→ (0,1), where τ is the covariate
space. For any t ∈ τ , Yn(t) represents an urn containing Y j

n (t) balls of color j ∈ {1, ..,d} and Zn(t) =
Yn/∑

d
j=1 Y j

n indicates the proportion of the colors.
When subject n enters the trial, his covariate profile Tn is observed. Then, a ball is sampled at random

from the urn identified by Tn (i.e. with proportions Zn−1(Tn)), its color is observed and represented by X̄n:
X̄ j

n = 1 when the color is j ∈ {1, ..,d}, X̄ j
n = 0 otherwise. Then, subject n receives the treatment associated to

the sampled color and a response ξ̄n is collected. The functional urn is then updated as: Yn = Yn−1 +DnXn,
where Xn and Dn are appropriately defined. Specifically, the weighting function Xn : τ 7→ [0,1]d should be
such that, for any t ∈ τ and j ∈ {1, ..,d}, ∑

d
j=1 X j

n (t) = 1 and E[X j
n (t)|Fn−1,Tn] = Z j

n(t), where Fn−1 is
the σ -algebra of the information related with the first (n− 1) patients. This is straightforward for t = Tn

by setting X j
n (Tn) = X̄ j

n , since X̄ j
n is conditionally on Fn−1 and Tn Bernoulli distributed with parameter

Z j
n(Tn). Then, we define a family of Bernoulli random variables {X̆ j

n (t); t ∈ τ}with parameters {Z j
n(t); t ∈ τ},

representing the color that would be sampled in the trial if the covariate profile of subject n was equal to
any t ∈ τ . Finally, we use the quantile function that links this family to compute Xn(t) for all t ∈ τ as
Xn := E[X̆n|Fn−1,Tn, X̄n]. Analogously, we can define the replacement functional matrix Dn : τ 7→ [0,1]d×d

as Dn := E[D̆n|Tn, X̄n, ξ̄n], where D̆n(t) is a function of a random variable having the same distribution of the
response observed from a subject with covariate profile t, i.e. the response that would be observed in the trial
if the covariate profile of subject n was equal to any t ∈ τ . Naturally, Dn(Tn) = D̆n(Tn). Since the quantile
functions of the response distributions are typically unknown, Dn is computed by using the corresponding
(parametric or nonparametric) estimators obtained with the information in Fn−1.

The key feature of the design is that quantile functions are used to update all urns, not just the urn for
which Tn = t. In theory there could be an uncountably infinite number of urns, with only a finite subset
of them used for patient allocation. However, in clinical practice, mathematically “continuous” covariates
are really not continuous; for instance, cholesterol is represented by integer values, likely in some range,
that would, for all intents and purposes, make it a finite discrete covariate. However, the procedure is well-
defined for uncountably infinite urns, and first order asymptotic properties can be obtained, although some of
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the covariate-specific metrics do not make sense in that context. When we move to second-order asymptotics,
we partition τ into K strata, which could be intervals of a continuous set.

3 Consistency Results

We now present some consistency results for (i) the probability of allocation of the subjects for each covariate
profile (Zn(t)), (ii) the proportion of subjects associated to each covariate profile assigned to the treatments
(Nt,n/∑

d
j=1 N j

t,n, where Nt,n := ∑
n
i=1 X̄i1{Ti=t}), (iii) the proportion of subjects assigned to the treatments

(Nn/n, where Nn := ∑
n
i=1 X̄i). Consider the following assumptions:

(A1) for any t ∈ τ and n≥ 1, D>n 1 = 1 (constant balance);
(A2) denoting by H(t) := E[D̆1(t)] the average replacement when the covariate profile is t, we assume

that H(t) is irreducible, diagonalizable and there exists α > 0 such that E[|E[Dn(t)|Fn−1,Tn, X̄n]−
H(t)|Fn−1] = O(n−α).

Denote by v(t) the right eigenvector of H(t) associated to λ = 1, with ∑
d
j=1 v j(t) = 1, and let µn−1 be the

probability distribution of Tn conditioned on Fn−1. Then,

(a) for any probability measure ν on τ , we have
∫

τ
‖Zn(t)−v(t)‖ν(dt) a.s.→ 0;

(b) if ∑
n
i=1 µi−1({t})

a.s.→ ∞, we have ‖Nt,n/∑
d
j=1 N j

t,n−v(t)‖ a.s.→ 0;

(c) if
∫

τ
|µn(dt)−µ(dt)| a.s.→ 0, we have ‖Nn/n−

∫
τ

v(t)µ(dt)‖ a.s.→ 0.

The convergence results consider a general covariate space τ . In order to show second-order properties,
we now partition τ into K finite elements, which could, for instance, be K intervals of a continuous covariate
space. This partitioning induces K urns used to allocate subjects with covariate profiles in the set {1, ...,K}.
In clinical trials practice, K must be considerably smaller than the total sample size.

4 Central Limit Theorems

We now present further assumptions that are required for establishing the second-order asymptotic proper-
ties.

• Finite partition of the covariate space. We assume that the covariate space τ is composed by a finite
number K ∈ N of distinct elements. When τ contains infinite elements, we can take a partition of τ , i.e.
{τ1, ..,τK} such that ∪kτk = τ and τk1 ∩ τk2 = /0 for k1 6= k2, and consider these sets to be the elements
of τ , i.e. τ := {τ1, ..,τK}. To facilitate the notation, without loss of generality in the sequel we redefine
τ = {1, ..,K} and µn−1(t) = µn−1({t}) = P(Tn = t|Fn−1) for any t ∈ τ .

• Conditional response distributions. The analog of the null hypothesis in classical inferential statistics
is given here by assuming that the conditional response distributions π1

t , ..,π
d
t are known for any t ∈ τ .

As a direct consequence, we have that Dn = D∗n and Hn = H with probability one for any n≥ 1.
• Eigenvalues of the limiting generating matrix. Denoting λ ∗H(t) the eigenvalue of Sp(H(t))\{1} with

largest real part, assume that maxt∈τ Re(λ ∗H(t))< 1/2.
• Dynamics of adaptive estimators.
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– (Covariate-stratification approach) For some t ∈ τ and j ∈ {1, ..,d}, consider that there are fea-
tures of interest θ

j
t related with the distribution π

j
t of the responses to treatment j conditionally on

the covariate profile t. Then, we assume that the corresponding adaptive estimator θ̂
j

t,n is strongly
consistent and its dynamics can be expressed as follows: there exists n0 ≥ 1 such that for any n≥ n0

θ̂
j

t,n− θ̂
j

t,n−1 =−
X̄ j

n1{Tn=t}

N j
t,n

( ft, j(θ̂
j

t,n−1)−∆Mt, j,n−Rt, j,n), (1)

where
(i) ft, j is a Lipschitz continuous function such that ft, j(θ

j
t ) = 0;

(ii) ∆Mt, j,n ∈Fn is a martingale increment such that E[∆Mt, j,n|Fn−1,Tn, X̄
j

n ] = 0, and it converges
stably to ∆Mt, j with kernel K independent of Fn−1:
L (∆Mt, j,n|Fn−1,Tn = t, X̄ j

n = 1) a.s.→ K(t, j);
(iii) Rt, j,n ∈Fn is such that nE[‖Rt, j,n‖2]→ 0.
Moreover, let ft, j be differentiable at θ

j
t , denote by λ ∗

θ
j

t
the eigenvalue of Sp(D ft, j(θ

j
t )) with largest

real part and assume that mint∈τ Re(λ ∗
θ

j
t
)> 1/2. We also assume that for some δ > 0,

sup
n≥1

E
[∥∥∆Mt, j,n

∥∥2+δ |Fn−1

]
<+∞a.s., (2)

and
E
[
∆Mt, j,n(∆Mt, j,n)

> |Fn−1

]
a.s.−→

n→+∞
Γt, j, (3)

where Γt, j is a symmetric positive matrix.
– (Covariate-adjusted approach) For some j ∈ {1, ..,d}, consider that there are features of interest

β j related with the entire family of distributions {π j
t ; t ∈ τ} of the responses to treatment j condi-

tionally on the covariates. Then, we assume that the corresponding adaptive estimator β̂
j

n is strongly
consistent and its dynamics can be expressed as follows:

β̂
j

n − β̂
j

n−1 =−
X̄ j

n

N j
n
( f j(β̂

j
n−1)−∆M j,n−R j,n), (4)

where the quantities in (4) fulfill the same conditions presented above for the dynamics (1).

We first provide the convergence rate and the joint asymptotic distribution concerning the quantities of
interest in the design in the framework of covariate-stratification response-adaptive designs. This result is
established in the following central limit theorem. We introduce the variables independent of σ(Fn;n≥ 1):
T ∈ τ with distribution µ(t), X̄ ∈ {0,1}d ∈S such that P(X̄ j = 1|T ) = v j(T ), D := E[D̆|T, X̄, ξ̄ ], where the
distribution of ξ̄ conditioned on {T = t} and {X̄ j = 1} is π

j
t .

Theorem 4.1. Define Wn := (Zn(t),Nt,n/w(Nt,n), θ̂t,n, t ∈ τ)>, W := (v(t),v(t),θt , t ∈ τ)>. Then,

µn(t)
a.s.−→ µ(t) = fµ,t(v(t),θt), Wn

a.s.−→W, (5)

√
n(Wn−W)

L−→N (0,Σ) , Σ :=
∫

∞

0
eu( I

2−A)
Γ eu( I

2−A>)du, (6)
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where

A :=

AZZ 0 0
−I I 0
0 0 Aθθ

 , Γ :=

ΓZZ ΓZN ΓZθ

Γ>ZN ΓNN 0
Γ>Zθ

0 Γθθ

 ,

and AZZ , Aθθ , ΓNN , Γθθ are block-diagonal matrices whose tth block is

(i) Att
ZZ = (I−H(t)+v(t)1>);

(ii) Att
θθ

is a block-diagonal matrices whose jth block is [Att
θθ
] j j := D ft, j(θ

j
t );

(iii) Γ tt
NN := µ−1(t)(diag(v(t))−v(t)v>(t));

(iv) Γ tt
θθ

is a block-diagonal matrices whose jth block is
[Γ tt

θθ
] j j := (v j(t)µ(t))−1E[∆Mt, j(∆Mt, j)

>|T = t, X̄ j = 1];

and ΓZZ , ΓZN , ΓZθ are matrices defined as follows: for any t1, t2 ∈ τ

(v) Γ
t1t2

ZZ := E[D(t1)g(t1,T, X̄)g>(t2,T, X̄)D>(t2)]−v(t1)v>(t2);
(vi) Γ

t1t2
ZN := H(t1)G(t1, t2)diag(v(t2))−v(t1)v>(t2);

(vii) [Γ t1t2
Zθ

] j := E[D(t1)g(t1, t2,e j)∆M>t2, j|T = t2, X̄ j = 1];

where g is a d-multivariate function with values in S and G(t1, t2) is a matrix with columns {g(t1, t2,e j); j ∈
{1, ..,d}}.

We now provide the convergence rate and the joint asymptotic distribution of the quantities interest in
the design in the framework of covariate-adjusted response-adaptive designs. This result is established in the
following central limit theorem.

Theorem 4.2. Define Wn := (Zn(t), t ∈ τ,Nn/n, β̂n)
>, W := (v(t), t ∈ τ,x0,β )

>. Then,

µn(t)
a.s.−→ µ(t) = fµ,t(x0,β ), Wn

a.s.−→W, (7)

√
n(Wn−W)

L−→N (0,Σ) , Σ :=
∫

∞

0
eu( I

2−A)
Γ eu( I

2−A>)du, (8)

and

A :=

AZZ 0 0
ANZ ANN ANβ

0 0 Aββ

 , Γ :=

ΓZZ ΓZN ΓZβ

Γ>ZN ΓNN 0
Γ>Zβ

0 Γββ

 ,

where again and AZZ , Aββ , Γββ are block-diagonal matrices whose tth or jth block is

(i) Att
ZZ = (I−H(t)+v(t)1>);

(ii) A j j
ββ

= D f j(β
j);

(iii) Γ
j j

ββ
:= (E[v j(T )])−1E[∆M j(∆M j)

>|X̄ j = 1];

and

(iv) ANN := I−∑
K
s=1 v(s)DN fµ,s(x0,β )

>;
(v) ANβ :=−∑

K
s=1 v(s)Dβ fµ,s(x0,β )

>;
(vi) ΓNN := diag(E[v(T )])−E[v(T )]E[v>(T )];

and ANZ , ΓZZ , ΓZN , ΓZβ are matrices defined as follows: for any t1, t2 ∈ τ

(vii) At2
NZ :=−µ(t2)I;
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(viii) Γ
t1t2

ZZ := E[D(t1)g(t1,T, X̄)g>(t2,T, X̄)D>(t2)]−v(t1)v>(t2);
(ix) Γ

t1
ZN := H(t1)E[G(t1,T )diag(v(T ))]−v(t1)E[v>(T )];

(x) Γ
t1 j

Zβ
:= E[D(t)g(t1,T, j)∆M>j |X̄ j = 1].

where we recall that g is a d-multivariate function with values in S and G(t1, t2) is a matrix with columns
{g(t1, t2,e j); j ∈ {1, ..,d}}.

Remark 4.1. We recall that Theorem 4.1 allows inferential procedures based on stratified estimators,
while Theorem 4.2 allows inference on covariate-adjusted regression parameters representing the covariate-
adjusted treatment effect.
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