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Abstract The three-parameter logistic model is an item response theory model
used with dichotomous items. It is well known that the parameters of the model are
weekly identifiable and that the maximization of the likelihood, which is performed
using numerical algorithms, is prone to convergence issues. In this paper, we pro-
pose the use of a penalized likelihood for the estimation of the item parameters. In
particular, the penalty term shrinks the guessing parameters towards a known con-
stant. Cross-validation is used to select such constant and the amount of shrinkage,
though estimation via an empirical Bayes approach is also considered. The method
is both simple and effective, and it is illustrated by means of a simulation study and
a real data example.
Abstract Il modello logistico con tre parametri è uno dei modelli item response
theory usato con item dicotomici. In letteratura è noto che i parametri del modello
sono debolmente identificabili e che la massimizzazione della verosimiglianza, che
è condotta attraverso algoritmi numerici, è soggetta a problemi di convergenza. In
questo articolo, si propone l’uso di una verosimiglianza penalizzata per la stima
dei parametri del modello. In particolare, il termine di penalizzazione regolarizza
le stime dei parametri di guessing verso una costante nota. L’ammontare di rego-
larizzazione viene determinato attraverso la validazione incrociata, e in alternativa
mediante un approccio Bayesiano empirico. Il metodo è pratico ed efficace, e viene
illustrato attraverso uno studio di simulazione e un esempio con dati reali.
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1 Introduction

The Three-Parameter Logistic (3PL) model is an Item Response Theory (IRT)
model used with dichotomous responses. This model can be used for multiple-
choice items, which are expected to have a non-zero probability of giving a cor-
rect response even at very low achievement levels. However, the parameters of this
model are weekly identifiable [6] and the algorithms used for the maximization of
the likelihood function frequently encounter convergence problems. A possible res-
olution is provided by regularization by means of penalized likelihood estimation
[3, 10]. In particular, this paper studies the inclusion in the likelihood function of
a penalty term that shrinks the guessing parameters towards a known constant. De-
spite a natural choice for this constant would be 1/k, where k is the number of
response options, we follow a data-driven approach for the selection of this value
and of the amount of shrinkage. More specifically, the selection is performed by
cross-validation [3]. An alternative route based on empirical Bayes estimation is
also considered.

The paper is organized as follows. Section 2 introduces the model and the esti-
mation methods, Section 3 shows an application to achievement data and Section 4
presents the results of a simulation study. Finally, Section 5 contains some conclud-
ing remarks.

2 Models and methods

In a 3PL model, the probability of a positive response to item j is given by

pi j = Pr(Xi j = 1|θi;a j,b j,c j) = c j +(1− c j)
exp{a j(θi−b j)}

1+ exp{a j(θi−b j)}
, (1)

where θi is the ability of person i, a j is the discrimination parameter, b j is the diffi-
culty parameter, and c j is the guessing parameter. Here, i = 1, . . . ,n and j = 1, . . . ,J,
so that n is the sample size and J the number of items. A convenient parameteriza-
tion of the model, suitable for estimation, is the following

pi j = c j +(1− c j)
exp(β1 j +β2 jθi)

1+ exp(β1 j +β2 jθi)
, (2)

with

c j = F(β3 j) =
exp(β3 j)

1+ exp(β3 j)
. (3)

Let β be the vector containing all item parameters. The marginal maximum like-
lihood method [1], which is a commonly used estimation method of IRT models,
requires the maximization of the following log likelihood function for β
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`(β ) =
n

∑
i=1

log
∫
R

J

∏
j=1

p
xi j
i j (1− pi j)

1−xi j φ(θi)dθi, (4)

where φ(·) denotes the standard normal p.d.f.
The penalized log likelihood function considered here is given by

`p(β ) = `(β )+ J(β 3), (5)

where β 3 is the vector containing all the guessing parameters, and J(β 3) is a
quadratic penalty term

J(β 3) =−
1

2σ2

J

∑
j=1

(β3 j−µ)2 , (6)

proportional to the log p.d.f. of the normal distribution with mean µ and standard
deviation σ . Note that to constrain the guessing parameters c j towards a constant c,
it is necessary to choose µ so that c = F(µ), with F defined in (3). Another option
would take a penalty derived from a beta distribution for c j.

2.1 Parameter tuning by cross-validation

A relevant issue is the choice of the tuning parameters µ and σ . The first proposal
is to adopt a typical approach followed for regularized regression [10], namely

i. Estimate the item parameter for fixed values of the tuning parameters µ and σ ;
ii. Select the tuning parameters by minimizing some error rate computed by cross-

validation [3].

Step i. above is simply performed, for example by recourse to IRT software which
allows for the introduction of a penalty term for 3PL models. Step ii. requires the
definition of a suitable cross-validation error, here taken as minus the log likelihood
of the validation set evaluated at the parameter estimates.

2.2 Empirical Bayes

An alternative method consists in treating µ and σ as parameter estimated by an
empirical Bayes approach. In particular, we implement this method by treating β 3
as normal random effects, and then jointly estimate (β 1,β 2,µ,σ) after integrating
them out from joint likelihood function of the data and β 3. Here the Laplace approx-
imation is employed to carry out the latter integration, a strategy greatly simplified
by the usage of automatic differentiation software [8].
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3 A real data example

The proposed methodology was applied to achievement data collected on students
attending the third year of vocational high school in Italy. In particular, we used the
mathematics test that was administered during the final exam. The sample is com-
posed of 3843 students. Only multiple-choice items were included in the analysis.
These were 14 items, all with four response options. All analyses were performed
using the R software [7].

We started the analysis from ordinary (unpenalized) maximum likelihood esti-
mation. Figure 1 visualizes the estimated correlation matrix among item parameter
estimators for the first four items. The estimates were obtained with the R package
mirt [2], and the R package ellipse [5] was used to obtain the plot.

The correlation matrix is nearly singular, since the estimated guessing parameter
of each item β̂3 j is negatively correlated with the estimated easiness parameter β̂1 j,
and it is positively correlated with the estimated discrimination parameter β̂2 j. At
times, such correlations are very high (in either direction), so that it is not surprising
that parameter estimation may become cumbersome. Some sort of regularization is
surely helpful.

Fig. 1 Estimated correlation matrix among item parameter estimators for the first four items.
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The function mirt to fit an IRT model in the mirt package has an option
parprior to introduce the penalty for the guessing parameters, which turned out
to be very handy to apply the methodology endorsed here. The tuning parameters
were selected by choosing among a set of candidate values. In particular, F(µ) was
selected in the set {0.1,0.15,0.2,0.25}, whereas for σ a set formed by 100 val-
ues between 0.2 and 5 was considered. The selection was performed by means of
10-fold cross-validation.

Fig. 2 Left: cross-validation error as a function of 1/σ , for given µ . Right: estimates of guessing
parameters, as a function of 1/σ , for given µ .
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Figure 2 shows the results obtained for this data set. On the left panel of the
figure, the cross-validation error is plotted against the reciprocal of σ . Thus, higher
values on the x-axis correspond to larger amounts of shrinkage. The different colors
refer to different values of F(µ). The vertical dashed lines indicate the point at
which the cross-validation error is smallest. This corresponds to the values µ =
F−1(0.20) and 1/σ = 2.5. The right panel of the figure shows the estimates of the
guessing parameters at different levels of shrinkage. For all the values of µ , the
smallest value of the cross-validation score is attained for σ values away from 0,
pointing to the need of some shrinkage for the guessing parameters.

The estimation based on empirical Bayes has been carried out by means of the
Template Model Builder (TMB) R package [9], which allows to define a
C++ template used to estimate the random effects model of interest. The use of
the package resulted in a rather efficient implementation, the key point being the
explicit integration of the ability parameters within the C++ template by means of
efficiently-coded Gaussian quadrature.

For the data set of interest, the empirical Bayes method provides estimated tuning
parameters equal to 1/σ̂ = 4.4 and µ̂ = F−1(0.22), implying a higher amount of
shrinkage for the guessing parameters with respect to cross validation. The estimates
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of the remaining item parameters were instead quite similar for the two penalized
methods.

The overall message of this example is that, even for a large sample of subjects,
the estimation of the guessing parameter is challenging, and penalized maximum
likelihood estimation improves the inferential results. The need of some regulariza-
tion may become more striking for smaller sample sizes, where numerical problems
may hamper the estimation routines of IRT software.

4 A simulation study

A small-scale simulation study has been performed to assess the performance of the
various methods. In particular, the focus was on a relatively small scale setting, with
n = 500 subjects and J = 30 items. Two different choices for the guessing param-
eters were considered. In the first setting, we took all the c j parameters as constant
and equal to 0.2, whereas for the second setting we took as guessing parameters
the estimates obtained from a large scale educational assessment, with values of c j
ranging between 0.04 and 0.33, with an average value of 0.16. The real data set was
employed also to set the values for the other item parameters, for either setting.

Three different methods were considered, given by ordinary maximum likelihood
estimation (MLE) as implemented in the mirt package, and the two penalized es-
timation methods with tuning parameters estimated by cross validation (CV) and
empirical Bayes (EB), respectively. Table 1 and 2 summarize the result of 100 sim-
ulated datasets. In particular, the tables report the average over the three groups of
parameters of Root Mean Squared Error (RMSE), the squared root of the average
of squared bias (B), and the average of Median Absolute Error (MAE).

Table 1 Summary of simulation results for Setting 1 (equal guessing parameters).

Method Easiness β 1 Discrimination β 2 Guessing c

RMSE B MAE RMSE B MAE RMSE B MAE

MLE 0.76 0.19 0.44 0.59 0.18 0.25 0.15 0.02 0.14
CV 0.23 0.03 0.14 0.26 0.03 0.15 0.04 0.01 0.01
EB 0.20 0.02 0.13 0.23 0.02 0.15 0.03 0.01 0.02

The tables points to some interesting results. First, the ordinary unpenalized es-
timation performs rather poorly in both settings, with unacceptably large variabil-
ity for all the parameters, thus confirming that this method is essentially useless
for datasets of this size. For Setting 1, the two penalized methods perform an ex-
cellent adjustment, with negligible bias and greatly reduced variability for all the
parameters. This is the setting more relevant to the adopted penalty, so that the
good performances are not surprising. For Setting 2, as expected, the two penal-
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Table 2 Summary of simulation results for Setting 2 (different guessing parameters).

Method Easiness β 1 Discrimination β 2 Guessing c

RMSE B MAE RMSE B MAE RMSE B MAE

MLE 0.70 0.21 0.37 0.53 0.18 0.23 0.14 0.04 0.10
CV 0.32 0.24 0.23 0.29 0.14 0.17 0.07 0.08 0.06
EB 0.30 0.28 0.25 0.24 0.16 0.17 0.08 0.07 0.07

ized methods perform less well, with bias similar to that of the MLE. At any rate,
the two penalized estimators have overall better performances, and they represent a
clear improvement over the MLE, with shrinkage offering a good level of protec-
tion against the large fluctuations affecting ordinary MLE. Finally, the differences
between the two penalized methods are generally minor, though the method based
on cross-validation seems to be slightly preferable in the most challenging setting.

5 Conclusion and ongoing research

This paper presents a procedure for the estimation of the 3PL model based on a
penalized likelihood approach. The application shows that by penalizing the likeli-
hood the error rate of prediction, assessed through cross-validation, is reduced. Even
if IRT models are not usually fitted to predict new observations, the procedure can
be viewed as a regularization method to obtain a model closer to the data generat-
ing process. The simulation study suggests that the penalized estimation represents
a notable improvement over ordinary maximum likelihood when the guessing pa-
rameters are constant, while the improvement is less substantial when the guessing
parameters exhibit large variation. A further finding is that the results obtained via
cross validation are generally similar to those obtained by an empirical Bayes ap-
proach.

In the Bayesian literature [6], the prior for the guessing parameters is usually a
distribution with mean equal to the reciprocal of the number of response options
for the items. Despite this seems a sensible choice, the application of the proposed
approach typically leads to the selection of a different value of the mean, a fact that
seems worth mentioning.

The method introduced here is very practical, since it only requires the introduc-
tion of a simple penalty term in the ordinary log likelihood function for MML esti-
mation of a 3PL model. More sophisticated approaches could be considered, such as
model-based shrinkage aiming to reduce the bias of guessing parameter estimators
[4]. Some investigation in this direction appears worth considering. The introduction
of flexible assumptions for the ability parameters, which may be recommendable in
some instances [11], appears instead more challenging.



8 Michela Battauz and Ruggero Bellio

It should be noted that this is a preliminary study. The use of regularization tech-
niques for the estimation of the 3PL model is still under investigation by the authors.
Future research will involve more extensive simulation studies to achieve a better
understanding of the performance of the procedure, and the consideration of further
regularization methods, targeting better inferential properties.
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