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Abstract In this work we propose a new class of long-memory models with time-
varying fractional parameter. In particular, the dynamics of the long-memory coef-
ficient, d, is specified through a stochastic recurrence equation driven by the score
of the predictive likelihood, as suggested by Creal et al. (2013) and Harvey (2013).
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1 Introduction

Long-memory processes have proved to be useful tools in the analysis of many em-
pirical time series. These series present the property that the autocorrelation function
at large lags decreases to zero like a power function rather than exponentially, so that
the correlations are not summable.

One of the most popular processes that takes into account this particular behavior
of the autocorrelation function is the AutoRegressive Fractionally Integrated Mov-
ing Average process (ARFIMA(p,d,q)), independently introduced by Granger and
Joyeux (1980) and Hosking (1981). This process generalizes the ARIMA(p,d,q)
process by relaxing the assumption that d is an integer.

The ARFIMA(p,d,q) process, Yt , is defined by the difference equation

Φ(B)(1−B)d(Yt −µ) =Θ(B)εt ,

where εt ∼WN(0,σ2), and Φ(·) and Θ(·) are polynomials in the backward shift
operator B of degrees p and q, respectively. Furthermore, (1−B)d = ∑

∞
j=0 π jB j,
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with π j = Γ ( j− d)/[Γ ( j + 1)Γ (−d)], where Γ (·) denotes the gamma function.
When the roots of Φ(B) = 0 and Θ(B) = 0 lie outside the unit circle and | d |< 0.5,
the process is stationary, causal and invertible. We will assume these conditions to
be satisfied.

When d ∈ (0,0.5) the autocorrelation function of the process decays to zero hy-
perbolically at a rate O(k2d−1), where k denotes the lag. In this case we say that the
process has a long-memory behavior. When d ∈ (−0.5,0) the process is said to have
intermediate memory.

If p = q = 0, the process {Yt , t = 0,±1, . . .} is called Fractionally Integrated
Noise, FI(d). In the following we will concentrate on FI(d) processes with d ∈
(−0.5,0.5).

Several papers have addressed the detection of breaks in the order of fractional
integration. Some of these works allowed for just one unknown breakpoint (see, for
instance, Berand and Terrin, 1996; Yamaghuchi, 2011). Others treated the number
of breaks as well as their timing as unknown (Ray and Tsay, 2002; Hassler and
Meller, 2014). Boutahar et al. (2008) generalize the standard long memory model-
ing by assuming that the long memory parameter d is stochastic and time-varying.
The authors introduce a STAR process, characterized by a logistic function, on this
parameter and propose an estimation method for the model. Finally, Roueff and von
Sachs (2011) take into account the time-varying feature of long-memory parameter
d using the wavelets approach.

Our approach is completely different because we allow the long memory param-
eter d to vary at each time t. Moreover, our approach is based on the theory of Gen-
eralized Autoregressive Score (GAS) models. In particular, the peculiarity of our
approach is that the dynamics of the long-memory parameter is specified through
a stochastic recurrence equation driven by the score of the predictive likelihood. In
this way we are able to take into account also smooth changes of the long-memory
parameter.

2 GAS model

To allow for time-varying parameters, Creal et al. (2013) and Harvey (2013) pro-
posed an updating equation where the innovation is given by the score of the con-
ditional distribution of the observations (GAS models). The basic framework is
the following. Consider a time series {y1, · · · ,yn} with time-t observation density
p(yt | ψt), where ψt = ( ft ,θ) is the parameter vector, with ft representing the time-
varying parameter(s) and θ the remaining fixed coefficients.

In time series the likelihood function can be written via prediction errors as:

L (y,ψ) = p(y1;ψ1)
n

∏
t=2

p(yt | y1, · · · ,yt−1;ψ1, · · · ,ψt) .

Thus, the t-th contribution to the log-likelihood is:
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lt = log p(yt | y1, · · · ,yt−1; f1, · · · , ft ;θ) = log p(yt | y1, · · · ,yt−1; ft ;θ) ,

where we assume that f1, · · · , ft are known (because they are realized).
The parameter value for the next period, ft+1, is determined by an autoregressive

updating function that has an innovation equal to the score of lt with respect to ft .
In particular, we can assume that:

ft+1 = ω +β ft +αst ,

where the innovation st is given by

st = St ·∇t ,

with

∇t =
∂ log p(yt | y1, · · · ,yt−1; ft ,θ)

∂ ft
(1)

and

St = I −1
t−1 =−Et−1

[
∂ 2 log p(yt | y1, · · · ,yt−1; ft ,θ)

∂ ft∂ f ′t

]−1

. (2)

By determining ft+1 in this way, we obtain a recursive algorithm for the estimation
of time-varying parameters.

3 TV-FI(d) model

In this section, we extend the class of FI(d) models, by allowing the long-memory
parameter d to change over time. The dynamics of the time-varying coefficient dt is
specified in the GAS framework outlined above.

The TV −FI(d) model is described by the following equations:

(1−B)dt yt = εt ,

dt+1 = ω +βdt +αst , (3)

where εt ∼ iidN (0,σ2), and st = St∇t with St and ∇t defined below.
To calculate the score of the log-likelihood it is preferable to consider the use of

autoregressive representation (see, for instance, Palma, 2007):

(1−B)dt yt = yt +
∞

∑
j=1

π j(dt)yt− j = εt ,

where
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π j(dt) =
j

∏
k=1

k−1−dt

k
=− dtΓ ( j−dt)

Γ (1−dt)Γ ( j+1)
=

Γ ( j−dt)

Γ (−dt)Γ ( j+1)
.

In practice, only a finite number n of observations is available. Therefore, we use
the approximation

yt =−π1(dt)yt−1−π2(dt)yt−2−·· ·−πm(dt)yt−m + εt ,

with m < n. Then, the t-th contribution, t = 1, . . . ,n, to the log-likelihood is:

lt(dt ,σ
2) = c− log(σ2)− 1

σ2

(
yt +

t−1

∑
j=1

π j(dt)yt− j

)2

where c is a constant and the corresponding score of the predictive likelihood, see
equation (1), becomes

∇t =−
1

σ2

(
yt +

t−1

∑
j=1

π j(dt)yt− j

)(
t−1

∑
j=1

ν j(dt)yt− j

)
, (4)

where

ν j(dt) =
∂π j(dt)

∂dt
= π j(dt)

(
−Ψ( j−dt)+Ψ(1−dt)+

1
dt

)
, (5)

with Ψ(·) representing the digamma function. Finally, we find that St in equation (2)
is

St = σ
2 ·

(
t−1

∑
j=1

ν j(dt)yt− j

)−2

.

4 Some Monte Carlo results

We simulated y1, . . . ,yn from a process

(1−B)dt yt = εt , (6)

where εt ∼ iidN (0,σ2), and dt is defined by

dt = 0.1+0.3
t
n

(7)

or

dt = 0.1+0.3 Φ

(
t−n/2

3
√

n

)
, (8)

with Φ(·) indicating the standard Gaussian distribution function.
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Fig. 1 Result of 200 Monte Carlo simulations, where a time variable fractional parameter (solid
line) is estimated with a TV-I(d) model. The dashed line represent the average estimates, while the
gray band shows the empirical 95% intervals.

The evolution of dt was then estimated using the TV-FI(d) model introduced
above. It should be noted that in GAS models the scaling defined by (2) is often
replaced by Sγ

t , for some suitable γ . We found results (Creal et al., 2013) to be more
stable with γ = 0.5. Also, GAS models can easily be accommodated in order to
include a link function Λ(·), typically with the objective to constrain the parameter
of interest to vary in some region. We used

dt = Λ(gt) = a+(b−a)
egt

1+ egt
,

so that dt ∈ (a,b), while gt ∈ IR. Recursion (3) is then defined in terms of gt , with (4)
and (5) easily adjusted for the reparametrization.

It should be remarked that d0, the value of the fractional at time 0, is necessary
to define the likelihood. In the following, we treat d0 as a parameter to be estimated
along with the others.

We obtained 200 Monte Carlo replications from the process defined by (6),
and (7) or (8), setting n = 1000 and σ = 2.

For each replication, the TV-FI(d) model was estimated by maximum likelihood,
setting (a,b) = (−0.4,0.6) and ω = 0, while estimating (d0,α,β ,σ).
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Simulation results are shown in Figure 1. The solid line shows the true evolution
of dt , while the dashed line is its estimate, averaged over the Monte Carlo replica-
tions. The gray band represents the empirical 95% intervals.
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