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Abstract Bayesian methods for graphical log-linear marginal models have not been
developed as much as traditional frequentist approaches. The likelihood function
cannot be analytically expressed in terms of the marginal log-linear interactions,
but only in terms of cell counts or probabilities. No conjugate analysis is feasible,
and MCMC methods are needed. We present a fully automatic and efficient MCMC
strategy for quantitative learning, based on the DAG representation of the model.
While the prior is expressed in terms of the marginal log-linear interactions, the
proposal is on the probability parameter space. In order to obtain an efficient algo-
rithm, we use as proposal values draws from a Gibbs sampling on the probability
parameters.
Abstract I metodi bayesiani per l’analisi di modelli grafici log-lineari marginali
non sono stati sviluppati allo stesso modo di quelli frequentisti. La funzione di
verosimiglianza non può essere espressa analiticamente attraverso i parametri log-
lineari marginali, ma solamente in termini di frequenze o probabilità di cella. Non
è possibile effettuare analisi coniugata, rendendo necessario l’utilizzo di metodi
MCMC. Presentiamo una strategia MCMC per l’apprendimento quantitivo, com-
pletamente automatica ed efficiente, basata sulla rappresentazione del modello in
termini di DAG. Mentre la prior è espressa in termini dei parametri marginali log-
lineari, la proposal è sullo spazio delle probabilità. Al fine di ottenere un algoritmo
efficiente, usiamo come proposal i valori ottenuti applicando un campionamento di
Gibbs sullo spazio delle probabilità.
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1 Introduction

Statistical models defined by imposing restrictions on marginal distributions of con-
tingency tables have received considerable attention in economics and social scien-
ces; for a thorough review see [2]. In particular standard log-linear models have
been extended by [1] to allow the analysis of marginal distributions in contingency
tables. This wider class of models is known as the class of marginal log-linear mod-
els. In these models, the log-linear interactions are estimated using the frequencies
of appropriate marginal contingency tables, and are expressed in terms of marginal
log-odds ratios. Following [1], the parameter vector λ of the marginal log-linear
interactions can be obtained as

λ =C log
(
Mvec(p)

)
, (1)

where vec(p) is the vector of joint probabilities, C is a contrast matrix and M spe-
cifies from which marginal each element of λ is calculated. A standard log-linear
model is obtained from (1) setting M equal to the identity matrix and C to the in-
verse of the design matrix. Marginal log-linear models have been used by [4] to
provide a parameterisation for discrete graphical models of marginal independence.
A graphical log-linear marginal model is defined by zero constraints on specific log-
linear interactions. It can be represented by a bi-directed graph like the one in Figure
1, where a missing edge indicates that the corresponding variables are marginally
independent; for the related notation and terminology see [3] and [4] .

Fig. 1 A bi-directed graph

Despite the increasing interest in the literature for graphical log-linear marginal
models, Bayesian analysis has not been developed as much as traditional methods.
The main reasons are the following. Graphical log-linear marginal models belong to
curved exponential families that are difficult to handle from a Bayesian perspective.
Posterior distributions cannot be directly obtained, and MCMC methods are needed.
The likelihood cannot be analytically expressed as a function of the marginal log-
linear interactions, but only in terms of cell counts or probabilities. Hence, an iter-
ative procedure should be implemented to calculate the cell probabilities, and con-
sequently the model likelihood. Another important point is that, in order to have a
well-defined model of marginal independence, we need to construct an algorithm
which generates parameter values that lead to a joint probability distribution with
compatible marginals.

A possibility is to follow the approach presented in [5], where a Gibbs sampler
based on a probability parameterisation of the model is presented. Even if using
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this approach one can obtain as a by-product the distribution of the log-linear in-
teractions, if the focus is on marginal log-odds a prior should be directly specified
for these parameters. Additionally, and more importantly, if any prior information
exists for log-odds then we need to work directly using the log-linear parameter-
isation. For instance, symmetry constraints, vanishing high-order associations or
further prior information about the joint and marginal distributions can be easily
specified by setting linear constraints on marginal log-linear interactions, instead of
non-linear multiplicative constraints on the probability space. For the previous rea-
sons, in [6] a novel MCMC strategy (the probability based sampler) is introduced.
In the probability based sampler the prior is expressed in terms of the marginal log-
linear interactions, while the proposal is defined on the probability parameter space.
Efficient proposal values are obtained via the conditional conjugate approach of [5].
The corresponding proposal density on the marginal log-linear interactions is ob-
tained by implementing standard theory about functions of random variables. For
more details on the methodology and the obtained results, see the extended version
of this work ([6]).

2 Probability Based independence Sampler

Following the notation of [5], we can divide the class of graphical log-linear
marginal models in two major categories: homogeneous and non-homogeneous
models. Both type of models are shown to be compatible, in terms of indepen-
dencies, with a certain DAG representation (augmented DAG). Nevertheless, while
homogeneous models can be generated via a DAG with the same vertex set, for non-
homogeneous ones it is necessary to include some additional latent variables. The
advantage of the augmented DAG representation is that the joint probability over
the augmented variable space (including both observed and latent variables) can be
written using the standard DAG factorisation. We parameterise the augmented DAG
via a set Π of marginal and conditional probability parameters on which, following
[5], we implement a conjugate analysis based on products of Dirichlet distributions.
Once a suitable prior is assigned on the marginal log-linear interaction parameters,
a Metropolis-Hastings algorithm can be used to obtain a sample from the posterior
distribution. For t = 1, . . . ,T , we repeat the following steps

1. propose Π
′ from q(Π ′|Π (t)), where Π

(t) is the value of Π at t iteration;
2. from Π

′ calculate via marginalisation the proposed joint probabilities p′ for the
observed table;

3. from p′, calculate λ ′ using (1) and then obtain the corresponding non-zero ele-
ments

−→
λ ′;

4. set ξ
′ = Π

′
ξ

; where Π
′
ξ

is a pre-specified subset of Π
′ of dimension

dim(Π)−dim(
−→
λ );

5. accept the proposed move with probability α = min(1,A)
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A =
f (n|Π ′) f

(−→
λ ′
)
q(Π (t)|Π ′)

f (n|Π (t)) f
(−→

λ (t)
)
q(Π ′|Π (t))

× abs

J
(

Π
(t),
−→
λ (t),ξ (t)

)
J
(

Π
′,
−→
λ ′,ξ ′

)
 , (2)

where abs(·) stands for the absolute value, and J =J (Π ,
−→
λ ,ξ ) is the determi-

nant of the jacobian matrix of the transformation Π = g(
−→
λ ,ξ ). The construction

of the Jacobian matrix is facilitated by the augmented DAG representation of the
model. Note that the ratio f (ξ ′)/ f (ξ (t)) cancels out from the acceptance rate
since we set f (ξı) = I{0<ξı<1} .

6. If the move is accepted, we set Π
(t+1) =Π

′, ξ
(t+1) = ξ

′, and
−→
λ (t+1) =

−→
λ ′ other-

wise we set Π
(t+1) = Π

(t) and
−→
λ (t+1) =

−→
λ (t).

In order to obtain a high acceptance rate it is crucial the choice of the proposal
density q(Π ′|Π (t)). As discussed in [6], an efficient proposal is q(Π ′|Π (t)) =
fq
(
Π
′|nA

)
f
(
nA |Π (t),n

)
, where nA is an augmented table. Exploiting the con-

ditional conjugate approach of [5] we consider as a “prior” fq(Π) a product of
Dirichlet distributions obtaining a conjugate “posterior” distribution fq(Π

′|n′A ).
The acceptance rate in (2) becomes equal to

A =
f
(
nA (t)|Π ′

)
f
(
λ ′
)

fq
(
Π

(t)|nA (t)
)

f
(
n′A |Π (t)) f

(
λ (t)
)

fq
(
Π
′|n′A

) × abs

(
J
(
Π

(t),λ (t),ξ (t))
J
(
Π
′,λ ′,ξ ′

) )
.

In the following, we will refer to this approach as the probability-based indepen-
dence sampler (PBIS). Although PBIS simplifies the MCMC scheme, the param-
eter space is still considerably extended by considering the augmented frequency
table nA . This algorithm can be further simplified by using as proposal a random
permutation of the MCMC output obtained applying the Gibbs sampling of [5]. The
acceptance rate becomes

A =
f (λ ′) fq(Π

(t))

f (λ (t)) fq(Π
′)
× abs

J
(

Π
(t),λ (t),ξ (t)

)
J
(

Π
′,λ ′,ξ ′

)
 .

This sampler is named the prior-adjustment algorithm (PAA) due to its characteris-
tic to correct for the differences between the prior distributions used under the two
parameterisations.

3 Simulation study

We evaluate the performance of the algorithms presented in Section 2 via a simu-
lation study. We generated 100 samples from the marginal association model rep-
resented by the bi-directed graph of Figure 1, and true log-linear interactions given
in Table 1. In addition to the algorithms described in Section 2, for comparative
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purposes, we consider random walks on marginal log-linear interactions λ and on
logits of probability parameters π (RW-λ and RW-π respectively). We compare the
examined methods in terms of Effective Sample Size (ESS) and Monte Carlo Error
(MCE).

Table 1 True Effect Values Used for the Simulation Study

Marginal Active interactions Zero interactions
AC λ AC

/0 =−1.40,λ AC
A (2) =−0.15,λ AC

C (2) = 0.10, λ AC
AC = 0

AD λ AD
B (2) = 0.12, λ BD

BD (2,2) = 0
BD λ BD

D (2) =−0.09, λ AD
AD (2,2) = 0

ACD λ ACD
CD (2,2) = 0.20, λ ACD

ACD (2,2,2) = 0
ABD λ ABD

AB (2,2) =−0.15, λ ABD
ABD (2,2,2) = 0

ABCD λ ABCD
BC (2,2) =−0.30,λ ABCD

ABC (2,2,2) = 0.15,
λ ABCD

BCD (2,2,2) =−0.10,λ ABCD
ABCD (2,2,2) = 0.07.

In Figure 2 we report the distribution of the ESS per second of CPU time. PAA
is clearly the most efficient among the four methods under consideration.

Fig. 2 ESS per second of CPU time
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In Figure 3, for all methods and all marginal log-linear interactions, we represent
the time adjusted MCEs for the posterior means. In the graph we represent the 95%
error bars of the average time adjusted MCEs for the posterior means. We notice that
PAA performs better than all competing methods, since the corresponding MCEs are
lower for almost all interactions.

Fig. 3 MCEs for posterior Mean adjusted for CPU time for the simulation study

For a more detailed analysis and a real data application, see Section 5 of [6].

4 Concluding remarks

In this paper we have presented a novel Bayesian methodology for quantitative
learning for graphical log-linear marginal models. The main advantages of this ap-
proach are the following. It allows us to incorporate in the model prior information
on the marginal log-linear interactions. It leads to an efficient and fully automatic
setup, and no time consuming and troublesome tuning of MCMC parameters is
needed. The authors are planning to extend the method to accommodate fully auto-
matic selection, comparison and model averaging.
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