Comparison of exact and approximate
simultaneous confidence regions in nonlinear
regression models

Confronto tra la regione di confidenza esatta ed
approssimata nei modelli di regressione nonlineari

Claudia Furlan and Cinzia Mortarino

Abstract Accuracy measures for parameter estimates represent a tricky issue in
nonlinear models. Practitioners often use the separate marginal confidence intervals
for each parameter. However, these can be extremely misleading due to the curva-
ture of the parameter space of the nonlinear model. For low parameter dimensions,
routines for evaluating approximate simultaneous confidence regions are available
in the most common software programs, but the degree of accuracy also depends on
the intrinsic nonlinearity of the model. In this paper, the accuracy of the marginal
confidence intervals, Hartley’s exact simultaneous confidence region (sCR), and the
most widespread approximate sCR are compared via both real data and simulations,
for discrete time diffusion models in the class of nonlinear regression models.
Abstract Nei modelli non lineari non é scontato riuscire ad ottenere misure di
accuratezza delle stime. Nella pratica spesso si usano gli intervalli di confidenza
marginali per ogni parametro, ma questa procedura puo portare a risultati inaffida-
bili a causa della curvatura dello spazio parametrico tipico dei modelli non lineari.
Nei pint comuni software si puo trovare implementato il calcolo della regione di con-
fidenza simultanea approssimata per un numero ridotto di parametri, ma il livello
di copertura esatto dipende dal grado di non linearita intrinseca del modello. In
questo lavoro, nell’ ambito dei modelli di regressione non lineari e in particolare
per i modelli di diffusione a tempo discreto, si confrontano fra loro i livelli di coper-
tura degli intervalli di confidenza marginali, della regione di confidenza simultanea
(sCR) esatta di Hartley e della sCR approssimata pii utilizzata.
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1 Introduction

Nonlinear models are the natural modelling framework for many real-world phe-
nomena. Unlike linear models, accuracy measures for parameter estimates, such
as confidence intervals or confidence regions, may represent a difficult task due to
the intrinsic curvature of the parameter space. A common mistake is relying on
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marginal confidence intervals, whose use can be misleading. Simultaneous confi-
dence regions are usually available in the most commonly used software programs,
only in the approximate form at least for low parameter dimensions.

The problem of constructing exact confidence regions for the parameters of non-
linear models has received little attention in the past (Lee et al, 2002), since this
is computationally intensive. Given the complexity of obtaining an exact simulta-
neous confidence region (sCR), a few approximations have been proposed (Seber
and Wild, 1989) under the normality assumption of homoscedastic errors. For in-
stance, the so-called ‘approximate’ sCR is derived by approximating the nonlinear
model via a linear Taylor expansion, thereby taking advantage of the asymptotic
normality of the estimator. Thus, the approximate confidence levels of the ‘approx-
imate’ sCR are valid asymptotically. This approximation is computationally more
attractive, since it corresponds to hyperellipsoids.

Under the normality assumption of homoscedastic errors, Hartley (1964) pro-
posed an exact sCR based on inverting an exact test. However, the power of the
exact test, and thus the coverage probability of the corresponding sCR, depends on
the choice of the idempotent projection matrix. More recently, Demidenko (2017)
studied the exact statistical properties in small samples.

Among the nonlinear regression models, in this paper, we focus on two of the
most widespread discrete time diffusion models of products and technologies; these
are the Bass model (BM) and the Generalized Bass model (GBM) which have three
and six parameters, respectively. We analyze two case studies based on real data,
namely Algerian natural gas production and Austrian solar thermal capacity. In this
paper we derive and compare Hartley (1964)’s exact sSCR with Guseo (1983)’s pro-
jection matrix with the ‘approximate’ sCR, in terms of accuracy, via simulation
studies. The simulation studies are performed to explore the effect of increasing
the parameter dimension with different model structures. Specifically, the BM is
considered in a constrained version and in its full form (two and three parameters
respectively), while the GBM is considered with two different intervention func-
tions (six parameters in both versions). The simulation studies are performed for
lifecycles with the same diffusion characteristics as those of the two case studies.

2 Diffusion models

Let us denote with n the number of observations used to fit the model and with y

the n-dimensional vector obtained by stacking the observed y; values, i =1,2,...,n.

Similarly, f(9¥;¢) will denote the vector f(;t) = {f(3:11), f(F:12),.... f(D:8,)} .
For a general nonlinear regression model,

yi=f(%:1)+e&, OeR i=12...n, (1)

where ¢(®) C R¥ is the exact sCR with confidence level 1 — a.

In the application of diffusion models, the starting point is given by an observed
time series reporting sales data or consumption/production of a technological inno-
vation. In this work, we consider the BM and GBM (Bass et al, 1994). Let z(¢) be
the cumulative data, at time 7, and w(¢) an intervention function. The GBM is:
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1 — e~ (p+a) fw()dt

z(t) = 2

" Lo=(rr fiwmas’

where m is the market potential, p is the innovation coefficient, ¢ is the imita-
tion coefficient, and w(¢) can be any integrable function. Below, we examine the
model arising when w(r) is specified by the so-called exponential shock (Guseo and
Dalla Valle, 2005),

w(t)=1+cre g, 3)

which allows us to describe the diffusion of a product for which, at time a;, we
observe a rapid and reversible (b; < 0) shock with intensity ¢;; and when w(z) is
specified by the so-called rectangular shock,

W(t) = 1 +Clla1§t§b] ) (4)

which allows us to describe the diffusion of a product for which we observe a con-
stant shock with intensity ¢y, in the time interval [a;,b;]. We will denote the GBM
of Eq. (2) with w(t) as in (3) by GBM,y,,, and with w(r) as in (4) by GBM,,. These
structures are a special case of model (1), where f(1;t) is represented by z(¢) in
Eq. (2), with w(¢) specified as in (3) or (4). The cumulative time series data (y) can
easily be used to jointly estimate all the parameters (m, p,q,a1,b1,c1) of the model
using nonlinear least squares. Finally, the BM is the special case of the GBM, when
w(t)=1,1reR".

3 Exact and approximate inference
Hartley (1964) proposed a method for evaluating an exact SCR. This method gives

the possibility of verifying whether any point in the parameter space ® belongs to
the exact (1 — o) level sCR. Hartley (1964)’s exact sCR is

b= r@l'Py—f(0)] K
=)l = Plly— f(9:1)] T n—k

where Fy_q (k,n—k) is the 1 — a percentile of a Snedecor’s F distribution with k and
n— k degrees of freedom. The confidence level is exact if £’s components can be as-
sumed to be independent and distributed according to a Gaussian distribution. In this
work, we assume error homoscedasticity with variance 62, and we use the projec-
tion matrix proposed by Guseo (1983), P = F(F'F)~'F’, where F denotes the n x k
matrix obtained by deriving the vector f(¥;¢) with respect to the k-dimensional
vector ¥, F = %. This assumption about P leads to the exact sCR that is used
in this work:

¢(O) = {19 Fla(k,nk)}, (5)

= SOV EFE) Py —f(90] K
= (00 [l — F(FF) T F ]y — f(9:0)] ~ n—k

@(@):{0: Fla(k,n—k)}

(6)
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The so-called ‘approximate’ sCR, denoted here by J(®), is derived by approx-
imating the nonlinear model by a linear Taylor expansion, taking advantage of the
asymptotic normality of the estimator. The ‘approximate’ sCR, J(@) C R, is

3@)={0: (0 —B)FF(O—-0) <ks’Fi_qlk,n—k)}, (7)

where ' = F (1§) and s? is the sample variance. As the linear approximation is valid
asymptotically, J(®) will have the correct confidence level of 1 — &, asymptotically.

To evaluate €(©®) and J(O), we derived the expression of the components of F
for the GBM,,,, GBM,,;, and BM, but we omit them here for brevity.

4 Real data analysis

One field that is currently under the public eye is the diffusion of renewable and
nonrenewable energy systems. One energy system of each type was chosen in this
study, namely Algerian natural gas production, in billion cubic metres (BCM), with
annual data from 1970 to 2004 (n = 35, source: www.bp.com), and Austrian ther-
mal solar capacity, in MW,;,, with annual data from 1982 to 2008 (n = 27, source:
www.estif.org). The data are shown in Figure 1.

We compare the €(®) of Eq. (6) and J(®) of Eq. (7) in both time series, for
increasing parameter dimensions. To accomplish this, we have selected three nested
models: the constrained BM (with m fixed, thus k = 2), the BM (k = 3), and GBM
(k = 6). In this paper, we decide to show J(@) and €(0) only for the BM k = 3.
To do that, we used a grid of 12,190,801 points. Each point in the grid has been
subsequently tested to assess inclusion in €(@) or J(®), via conditions (6) and (7),
respectively, with 1 —a = 0.95. For the natural gas production, the proportion of
common points with respect to €(®) is 0.706, while it is 0.7 for J(®). For the solar
thermal capacity, the proportion of common points with respect to €(0) is 0.442,
while it is 0.512 for J(@). The degree of overlap is smaller in both energy systems
compared with what we found with k = 2. The representation of these points, for
both time series, is shown in Figure 2, together with the representation of a grid cov-
ering the parallelepiped generated by combining the marginal confidence intervals
of level 0.95, evaluated separately with the Bonferroni method for the three param-
eters. For both time series, the difference between €(©) and J(0) is larger than that
observed for the case with k = 2. In particular, for the solar thermal capacity, the
discrepancy between J(®) and €(®) is much bigger, and the shape of €(0) is far
from being ellipsoidal.

Moving to the case with k = 6, we fitted the GBM,,,, to the natural gas production
and the GBM,,; to the solar thermal capacity. Only the fitted values when k = 6 are
plotted in Figure 1, since the GBMs were found to be the best models, according
to the F-test for nested models. For the natural gas production, the proportion of
common points with respect to €(®) is 0.060, while it is 0.103 for J(®). For the
solar thermal capacity, the proportion of common points with respect to €(®) is
0.333, while it is 0.984 for J(0). The degree of overlap is drastically low, denoting
a high curvature of the space f(1;t). Especially in this final case, J(®) appears to
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be extremely small with respect to €(@), thereby excluding many values that belong
to €(O).

5 Simulation study

In this section, €(@) and J(®) are compared in terms of coverage probability, for
the models used in Section 4: the constrained BM, BM, and GBM. For each model,
we generated N=1,000 simulated time series, using estimates as true values. More-
over, the length of simulated time series corresponds to the number of real data
(n = 35 for the natural gas production and n = 27 for the solar thermal capacity).
In this way, the simulation study investigates the coverage probability of €(@) and
J(®), with data with diffusion characteristics, intervention functions, and stage of
the lifecycle corresponding to those of the time series considered in Section 4.

Given each simulated time series, j = 1,...,N, we evaluated parameter estimates
and both sCRs, €(®); and J(®);. We then tested whether the true values of the
parameters used to generate the N time series were included in €(®) ; or 3(®) ;. The
proportion of €(@); and J(@); containing the true values represents the coverage
probability. The coverage probabilities of J(®) and €(0) for the constrained BM
(k=2), BM (k= 3), and GBM (k = 6) are plotted in Figure 3: the difference between
¢(0®) and J(O) increases with the model complexity, and it is negligible for k =
2 for both energy systems. It emerges that the coverage probability of €(®) also
decreases as the variability (o /m)? increases, but its decay is less severe than what
happens with J(®). This is especially true for k = 6. In summary, for both the
case studies, the degree of overlap of €(®) and J(®) decreased as k increased,
denoting that the parameter space curvature increased with k, as well as that the
shape of €(®) was progressively farther from being ellipsoidal. We could conclude
that J(®) can be satisfactorily used with a low parameter dimension, or with a
moderate parameter dimension only if the variability is limited. The validity of this
result is limited to data with diffusion characteristics similar to those used in this
paper. Further research is required to generalize the effect of the lifecycle stage on
the coverage probability.
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Fig. 1 The lines denote the fitted values (GBM,y, and GBM,;, respectively).
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Fig.2 BM (k=3,1— o =0.95). €(O) is in red and J(O) in blue. Grey points represent sCIs.
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Fig. 3 Coverage probability of ¢(®) and J(®). Values of (¢/m)? are in the log scale.
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