Is retirement bad for health? A matching approach

Il pensionamento fa male alla salute? Una analisi causale

Elena Pirani, Marina Ballerini, Alessandra Mattei, Gustavo De Santis

Abstract The aim of this paper is to assess the causal impact of the transition from work to retirement on individual health in various European countries in recent years. The health effects of this transition are far from clear: the specialized literature reports both positive and negative consequences, however, most of the early studies focus on associations rather than causal relationships. We estimate causal effects of retirement on three measures of health and well-being – self-rated health, depression, quality of life – using a propensity score matching approach under the assumption of selection on observables on data coming from SHARE, the longitudinal Survey on Health, Ageing and Retirement in Europe, in the years between 2004 and 2016. Our results suggest that the transition from work to retirement negatively affect self-rated health almost everywhere in Europe; nevertheless, the quality of life seems to improve, especially in Continental and Mediterranean countries.

Abstract L’obiettivo di questo lavoro è valutare l’impatto causale del pensionamento sulla salute individuale in vari paesi europei. La letteratura riporta effetti sia positivi che negativi del pensionamento sulla salute e benessere degli individui, tuttavia, la maggior parte degli studi precedenti si concentra sulle associazioni piuttosto che sulle relazioni causalì. Considerando tre misure di salute – salute percepita, depressione e qualità della vita – sulla base dei dati delle indagini SHARE svolte tra il 2004 e il 2016, stimiamo gli effetti causali del pensionamento sulla salute utilizzando l’approccio del propensity score matching sotto l’ipotesi di assenza di confondimento. I risultati suggeriscono che il pensionamento ha effetti negativi sulla salute percepita in tutti i paesi europei, mentre la qualità della vita sembra beneficiarne, soprattutto nei paesi dell’Europa continentale e mediterranea.

Key words: Retirement; Europe; Share; Causal inference.
1 Retirement and health: a complex connection

The effects on health of the transition from work to retirement are unclear. Several scholars argue that retirement itself is a stressful event (e.g., Carp 1967; MacBride 1976), which can lead to a break with support networks and friends, and may be accompanied by feelings of loneliness, uselessness, or obsolescence (MacBride 1976). Others claim instead that retirement is a health-preserving life event: it is a relief from work-related stress (Eibich 2015), and encourages health-improving behaviors – such as quit smoking – or increased physical activity (Eibich 2015; Insler 2014).

A strand of the literature reports a significant increase in health after retirement (e.g. Blake and Garrouste 2012; Charles 2004; Coe and Zamarro 2011; Insler 2014; Latif 2013; Neuman 2008), whereas other researchers find significant negative effects on both objective and subjective health measures (e.g. Behncke 2012; Dave et al. 2008; Sahlgren 2012), and also on cognitive functions (Bonsang et al. 2012; Mazzonna and Peracchi 2012). Bound and Waidmann (2007) showed a short-term positive relationship between retirement and health for men but not for women.

In a large part of the previous studies, the focus was on the association between health and retirement, and comparisons between the retired and those still working were usually not adjusted for health characteristics before retirement: this adjustment is instead crucial for drawing inference on the causal effects of retirement on health (Coe and Zamarro 2011).

In this paper, we aim to assess the causal impact on health of the transition from work to retirement by applying a propensity score matching approach under the assumption of selection on observable to the data of the Survey on Health, Ageing and Retirement in Europe (SHARE). We refer to several European countries, and analyse the heterogeneity of the causal effects across different geographical areas.

2 Data and method

Our empirical analyses were based on SHARE, the Survey on Health, Ageing and Retirement in Europe, which is a panel including five regular waves plus a wave on people’s life histories (wave 3, SHARELIFE, which, however, is not considered here because it collected very different information compared to the regular waves and excluded some of the variables we need). In each wave, SHARE data cover the key areas of life (health, socio-economic status social and family networks, etc.) of more than 60,000 individuals aged 50 or over. We focused on the period between 2004 and 2016 and on a subset of the SHARE countries that participated in at least three consecutive waves (Austria, Belgium, Czech Republic, Denmark, Estonia, France, Germany, Italy, the Netherlands, Slovenia, Sweden, Switzerland, and Spain), and for which we had all the information we needed for our analysis.

We selected three health and well-being indicators. As a general measure of health, we used self-rated health, dichotomizing the original 5-point scale into good
Is retirement bad for health? 3

(excellent, very good, good) and poor (fair, poor) perceived health (preliminary analyses considering the original formulation proved consistent results). Because of its subjective nature, self-rated health may change across populations (Prinja et al., 2012); however, various studies proved its power in predicting objective health conditions (Egidi and Spizzichino, 2006), physical and emotional well-being (Bayliss et al., 2012), and even mortality (Idler and Benyamini, 1997). Moreover, we used a composite indicator of depression constructed from the 12 basic items of the EURO-D scale (Prince et al., 1999): depressed mood, pessimism, suicidality, guilt, sleep, interest, irritability, appetite, fatigue, concentration, enjoyment and tearfulness. This scale, which ranges from 0 (not depressed) to 12 (very depressed), was developed in an effort to derive a common scale of depression symptoms, especially in later life, based on different indicators in several European countries. Finally, we considered a theoretically grounded measure of quality of life, i.e., a composite indicator based on four subscales corresponding to four life domains (Hyde et al., 2003; Mehrbrodt et al., 2017): control (C), autonomy (A), self-realization (S) and pleasure (P). After reversing the original scale, this indicator, which was proved to represent a reliable indicator of quality of life in the context of research on ageing (Wiggins et al., 2008), scored between 0 (high quality of life) and 36 (low quality of life).

Because our objective was the estimation of a causal effect of entering retirement on individual well-being in the short run, we focused on the subsample of those who were in the labor market (employed or self-employed) in the waves $t=1,2,4$ of the survey and were either in the labor market or retired in the waves $t=2,4,5$. Those who got out of the labor market for other reasons (e.g., unemployment) were discarded from our subsample.

We followed the “potential outcome” approach (e.g., Imbens and Rubin, 2015). For each unit i, $i=1,..., n$, we considered a vector X_i of background variables. Let D_i denote the treatment variable indicator, equal to 1 if unit i retires between two consecutive waves of the survey – waves $w1$ and $w2$; waves $w2$ and $w4$, or waves $w4$ and $w5$ – and zero otherwise. Under the Stable Unit Treatment Value Assumption (SUTVA) (Rubin, 1980), for each unit i there are two potential outcomes at a future point in time after treatment (at waves $w4$, $w5$ or $w6$): the value of the health outcome Y_i if unit i retired – $Y_i(1)$ – and the value of Y at the same future point in time if the unit did not retire – $Y_i(0)$. The causal effect of the transition from work to retirement for each unit is defined as a comparison of the treatment and control potential outcomes, $Y_i(1)$ and $Y_i(0)$, typically their difference.

In this paper we focus on Average Treatment Effects on the Treated (ATT effects), that is, the effects of the transition from work to retirement averaged over the subpopulation of units who actually retired: $\text{ATT} = E[Y_i(1) - Y_i(0) | D_i=1]$.

Because we used observational data, we needed to introduce some assumptions on the treatment-assignment mechanism to draw inference on the causal effects of interest. We assumed unconfoundedness (or selection on observables), which implies that, conditioning on the observed covariates, an experimental-like context is reproduced. Formally, unconfoundedness requires that the treatment assignment is independent of the potential outcomes: $D_i \perp (Y_i(0), Y_i(1))|X_i$. We also assumed that
there was sufficient overlap in the joint distribution of the covariates between treated and control subjects: $0 < P(D_i=1|X_i=x) < 1$ for each i. Under these assumptions, we applied a statistical matching technique, the purpose of which was to select a sub-group of control subjects (who did not retire between two subsequent waves) who were, in all respects, as similar as possible to the treated subjects, i.e., those who retired from work. We matched individuals based on the propensity score, or the probability of entering retirement conditional on the observed covariates. The propensity score is a balancing score, that is, covariates are independent of the treatment conditional on the propensity score. Moreover, if the unconfoundeness and the overlap assumptions hold conditional on covariates, they also hold conditional on the propensity score (Rosenbaum and Rubin 1983). Therefore, matching on the propensity score is sufficient to remove confounding.

The variables on which we constructed our propensity score included individual socio-demographic characteristics (e.g., age, living arrangement, relatives alive, level of education) and health-related behaviours and health conditions (e.g., smoking and drinking, mobility index, as well as self-rated health, quality of life, and depression). We also introduced the type and the sector of work, even if we acknowledge that these aspects only partially account for important aspects of working life, such as stressing factors or autonomy in decisions, which could importantly contribute to individual’s health and wellbeing. We imposed an exact matching on country of residence and gender. On the basis of the estimated propensity score, for each of the 1124 retired individuals we selected as a match the closest individual – i.e., a person of the same sex, from the same country and with very similar pre-treatment characteristics – among the 6250 potential controls (1-to-1 nearest neighbor matching; Abadie and Imbens 2011).

3 Preliminary results

The check of the covariate balance (i.e., similarity of treated and controls individuals in terms of covariates) proved that the matching procedure was successful: after matching, the differences between the two groups (retired and non-retired) in terms of socio-demographic, work-related and health covariates either disappeared (best case) or were drastically reduced (not shown here). We proceeded then to the estimation of the causal effect of retirement on health, by computing the Average Treatment Effects on the Treated (ATT) using a matching estimator.

The first part of Table 1 reports the ATT effects of retirement on the three well-being indicators considered, computed for all the SHARE countries together. Our results show a worsening of self-rated health after retirement; conversely, they also convey the impression of a slightly improvement in terms of (less) depression and (higher) quality of life. Note however that these two latter estimated effects are very small in absolute terms and not statistically significant.

In order to account for the heterogeneity of people living in the different European countries, we estimated the ATT effects separately for the Nordic
Is retirement bad for health? 5

countries (Denmark and Sweden), Continental countries (Austria, Belgium, France, Germany, the Netherlands, and Switzerland), Mediterranean countries (Spain and Italy), and East European countries (Czech Republic, Slovenia, Estonia). The negative effect of retirement on self-rated health persisted for all European areas, even if with a loss of significance for East European countries.

Considering European countries altogether masks some territorial differences for the other two well-being indicators: both depression and quality of life levels increase for retired people in Continental and Mediterranean countries (although the effect is not statistically significant for the second group, maybe due to the small sample size). On the contrary, in Nordic countries retirement seems to determine a detrimental effect also on depression and quality of life (but again results are not statistically significant), whereas for Eastern European countries the effect on the two well-being variables diverges.

Table 1: Estimated ATT effects and their standard errors, for all countries, and by groups of countries. SHARE 2004-2016.

<table>
<thead>
<tr>
<th></th>
<th>Self-rated health</th>
<th>Depression</th>
<th>Quality of life</th>
</tr>
</thead>
<tbody>
<tr>
<td>All countries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>treated (n=1124),</td>
<td>ATT 0.09</td>
<td>-0.12</td>
<td>-0.17</td>
</tr>
<tr>
<td>matched controls (n=1124)</td>
<td>Std Err 0.01</td>
<td>0.07</td>
<td>0.21</td>
</tr>
<tr>
<td>By group of countries:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nordic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>treated (n=194),</td>
<td>ATT 0.09</td>
<td>0.13</td>
<td>0.29</td>
</tr>
<tr>
<td>matched controls (n=194)</td>
<td>Std Err 0.03</td>
<td>0.15</td>
<td>0.44</td>
</tr>
<tr>
<td>Continental</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>treated (n=474),</td>
<td>ATT 0.08</td>
<td>-0.10</td>
<td>-0.91</td>
</tr>
<tr>
<td>matched controls (n=474)</td>
<td>Std Err 0.02</td>
<td>0.11</td>
<td>0.31</td>
</tr>
<tr>
<td>Mediterranean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>treated (n=116),</td>
<td>ATT 0.12</td>
<td>-0.14</td>
<td>-0.13</td>
</tr>
<tr>
<td>matched controls (n=116)</td>
<td>Std Err 0.05</td>
<td>0.22</td>
<td>0.68</td>
</tr>
<tr>
<td>East European</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>treated (n=340),</td>
<td>ATT 0.04</td>
<td>-0.24</td>
<td>0.68</td>
</tr>
<tr>
<td>matched controls (n=340)</td>
<td>Std Err 0.03</td>
<td>0.15</td>
<td>0.44</td>
</tr>
</tbody>
</table>

In our analysis the richness of background (i.e., pre-treatment) information allowed us to adjust treatment comparisons for a large set of pre-treatment characteristics – in terms of health, life-style behaviors, socio-demographic characteristics and factors linked to the (previous) working condition – and thus the assumption of selection on observable appears to be plausible. Under this assumption, we found that the effects of retirement on health vary not only according to the context of reference, but also depending on the specific health/well-being indicator considered.

It is thus worth to investigate more in detail the mechanisms through which retirement affects the various dimensions of health and well-being. Specifically, aspects such as family types and intergenerational relationships, social relationships, embeddedness in social network, and job characteristics will be examined in our future research.

Acknowledgements: We thank the CREW group for early feedback on this paper (CREW=Care, Retirement and Wellbeing of Older People across Different Welfare Regimes; https://crew-more-years-better-lives.org/).
References