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Background

Viewpoints on environmental sampling

reference to the population
spatial sampling (at least two dimensions added)

Role of auxiliary information in survey sampling

modify the inclusion probabilites
estimation via the inclusion probabilities (and/or further auxiliary
variables)

Data spatial correlation may influence the variance of estimated
standard error
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Link between sampling and entropy
Why search for sampling plans with high entropy?

The entropy of a sampling plan is seen as a measure of
RANDOMNESS

Conclusion:
(Conditional) Poisson sampling enjoys the maximum entropy property

But careful:
sampling entropy
spatial entropy

A good sampling plan for spatially correlated data ought to

produce similar estimates for different spatial configurations of
the variable under study,
i.e. the estimate should not be affected by the underlying spatial
structure.
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Inclusion probabilities

They are the basis of the design based inference, where HT-type
estimators are proposed.

Role of inclusion probabilities:
They weigh the values of the variables under study in the sampled
units

Methods have been developed for sequentially modifying the
(population) inclusion probabilites by means of FURTHER
pre-sampling weights.
Such further weights consider DISTANCES.

The aim is trying to obtain sampling plans that are well spread.
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Parallel and independent work

Modifications of classical entropy measures that keep the
POPULATION spatial structure into account

For a given variable X, different spatial structures deliver the same
entropy value, unless ...

Briefly, some modifications are introduced
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Aim of this work

To explore the consequences of using some components of the
spatial entropy measures as weights

There are differences according to the consideration of
"labels" spread (sampling entropy)

"values of the variable" spread (spatial entropy)
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Spatial entropy

H(X) = E[I(pX)] =

I∑
i=1

p(xi) log

(
1

p(xi)

)
. (1)

Consider the two variables Z and W:

Z is the variable corresponding to unordered pairs of realizations of X
over the observation area; it may present R =

(I+1
2

)
categories.

W classifies the Euclidean distances within the observation window
according to a set of distance classes wm, with m = 1, . . . ,M.
A set of distance breaks d0, . . . , dM is fixed, with d0 = 0 and dM being
the maximum possible distance inside the window; then, each class
is wm =]dm−1, dm].
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Use of the bivariate properties of entropy

The following well known relationship of entropy theory holds

H(Z) = MI(Z,W) + H(Z)W . (2)

Rename the first term as Spatial Mutual Information

SMI(Z,W) =

M∑
m=1

p(wm)SPI(Z|wm) (3)

and its weighted components as Spatial Partial Information

SPI(Z|wm) =

R∑
r=1

p(zr|wm) log

(
p(zr|wm)

p(zr)

)
. (4)
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Sampling entropy

H(S) =
J∑

j=1

p(sj) log

(
1

p(sj)

)
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Spatially correlated Poisson Sampling (SCPS)

Idea: the variable is correlated so sampled units should be well
spread

Sequential method: units are visited according to spatial order
initial inclusion probabilities sum to the expected sample size n

an indicator function Ik is defined for each population unit, taking
value 1 if the unit is sampled
the sampling outcome is decided for unit 1
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How does the procedure work

the remaining units’ inclusion probabilities are updated
accordingly, following the rule

π
(k)
l = π

(k−1)
l − (Ik − π(k−1)

k )w(l)
k

repeat for unit 2, 3, ..., N

at step N, the final vector of inclusion probabilities is
(π

(N)
1 , . . . , π

(N)
N )′ = (I1, . . . , IN)

′

Weights decide how the sampling of a unit is affected by the previous
ones; they depend on a distance function d(k, l) and give negative
correlation to close units
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Spatial entropy in SCPS

Innovation: new weighting system for SCPS, which exploits the
theory of spatial entropy.

Weights are built in order to take the spatial correlation of the variable
X into account (novelty!), via SMI. The stronger SMI, the smaller our
interest in sampling neighbouring units.

SMI becomes the auxiliary variable for building a well founded
weighting system for spatially balanced sampling.
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Simulation study - data

binary variable X

N = 400 realizations: 200 x0 = 0 and 200 x1 = 1
realizations arranged according to two spatial configurations

Compact Random
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Simulation - weights

The two configurations produce different SPI values

Distance classes: w1 = [0, 1], w2 =]1, 2], w3 =]2, 5], w4 =]5, 20
√

2]

Spatial mutual information - partial terms

[0, 1] ]1, 2] ]2, 5] ]5, 20
√

2]
Compact 0.574 0.485 0.289 0.010
Random <0.001 0.001 <0.001 <0.001

a unit k is visited for sampling
SPI values are rescaled to sum to 1 and assigned to units
l = k + 1, . . . ,N according to their distance from k

they become the weights for updating the remaining inclusion
probabilities

RANDOM CONFIGURATION: probabilities remain almost constant
COMPACT CONFIGURATION: probabilities for close units decrease
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Simulation - sampling

100 samples of size n = 40 are drawn from each dataset.

The initial inclusion probabilities are constant: πk = n/N for all units k.

Example (one simulated sample):
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The Voronoi tessellation is also plotted

15 / 19



Introduction Spatial entropy Sampling entropy About our proposal Conclusions

Results - HT estimates

The thick vertical line marks the true total Y = 200
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MSE:

compact configuration: MSEc = 215
random configuration: MSEr = 928
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Results - variance of Voronoi polygons

It is a measure of how well spread samples are (the smaller the
better)

v2(v) =
1
n

n∑
h=1

(vh − 1)2

vh: sum of the inclusion probabilities of all units in the hth Voronoi
polygon
E(vh) = 1
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Future work

We look for the communication between seemingly separated
worlds:
spatial entropy
and
sampling entropy
Deepen the means of considering the important contribution
contained in partial spatial information
Explore ways for estimating the probabilites entering spatial
entropy
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Thank you!
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