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Background

Viewpoints on environmental sampling

@ reference to the population
@ spatial sampling (at least two dimensions added)

Role of auxiliary information in survey sampling

@ modify the inclusion probabilites

@ estimation via the inclusion probabilities (and/or further auxiliary
variables)

Data spatial correlation may influence the variance of estimated
standard error
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Link between sampling and entropy
Why search for sampling plans with high entropy?

The entropy of a sampling plan is seen as a measure of
RANDOMNESS

Conclusion:
(Conditional) Poisson sampling enjoys the maximum entropy property
But careful:

@ sampling entropy

@ spatial entropy

A good sampling plan for spatially correlated data ought to

@ produce similar estimates for different spatial configurations of
the variable under study,

@ i.e. the estimate should not be affected by the underlying spatial
structure.
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Inclusion probabilities

They are the basis of the design based inference, where HT-type
estimators are proposed.

Role of inclusion probabilities:
They weigh the values of the variables under study in the sampled
units

Methods have been developed for sequentially modifying the
(population) inclusion probabilites by means of FURTHER
pre-sampling weights.

Such further weights consider DISTANCES.

The aim is trying to obtain sampling plans that are well spread.

4/19



Introduction
00000

Parallel and independent work

Modifications of classical entropy measures that keep the
POPULATION spatial structure into account

For a given variable X, different spatial structures deliver the same
entropy value, unless ...

Briefly, some modifications are introduced
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Aim of this work

To explore the consequences of using some components of the
spatial entropy measures as weights

There are differences according to the consideration of
@ "labels" spread (sampling entropy)

@ "values of the variable" spread (spatial entropy)
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Spatial entropy

0 = i) = 3o 108 (5 ) K

Consider the two variables Z and W:

Z is the variable corresponding to unordered pairs of realizations of X
over the observation area; it may present R = (') categories.

W classifies the Euclidean distances within the observation window
according to a set of distance classes w,,, withm =1,... M.

A set of distance breaks dy, . . ., dy is fixed, with dy = 0 and d,, being
the maximum possible distance inside the window; then, each class
is Wi Z]dm_1 , dm]
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Use of the bivariate properties of entropy

The following well known relationship of entropy theory holds
H(Z)=MI(Z,W) + H(Z)w. (2)

Rename the first term as Spatial Mutual Information

SMI(Za W) = Zp(wm)SPI(Z|Wm) 3)

m=1
and its weighted components as Spatial Partial Information

R

SPI(Zlww) = 3 p(erlw) log (”(;('Zw)m)) )

r=1
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Sampling entropy

Conclusions

(e]o]

9/19



Sampling entropy
oeo

Spatially correlated Poisson Sampling (SCPS)

Idea: the variable is correlated so sampled units should be well
spread
Sequential method: units are visited according to spatial order

@ initial inclusion probabilities sum to the expected sample size n

@ an indicator function I, is defined for each population unit, taking
value 1 if the unit is sampled

@ the sampling outcome is decided for unit 1
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How does the procedure work

@ the remaining units’ inclusion probabilities are updated
accordingly, following the rule

i = Y = (=)

@ repeat forunit2, 3, ..., N
@ at step N, the final vector of inclusion probabilities is
@M MY =, )
Weights decide how the sampling of a unit is affected by the previous

ones; they depend on a distance function d(k, [) and give negative
correlation to close units
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Spatial entropy in SCPS

Innovation: new weighting system for SCPS, which exploits the
theory of spatial entropy.

Weights are built in order to take the spatial correlation of the variable
X into account (novelty!), via SMI. The stronger SMI, the smaller our
interest in sampling neighbouring units.

SMI becomes the auxiliary variable for building a well founded
weighting system for spatially balanced sampling.
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Simulation study - data

@ binary variable X
@ N = 400 realizations: 200 xo = 0 and 200 x; = 1
@ realizations arranged according to two spatial configurations
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Simulation - weights
The two configurations produce different SPI values

Distance classes: w; = [0, 1], wy =]1,2], ws =]2, 5], w4 =]5,20/2]

Spatial mutual information - partial terms

0,1 J1,2]  ]2,5]  ]5,20v?2]
Compact 0.574 0.485 0.289 0.010
Random <0.001 0.001 <0.001 <0.001

@ a unit k is visited for sampling

@ SPI values are rescaled to sum to 1 and assigned to units
I=k+1,...,N according to their distance from k

@ they become the weights for updating the remaining inclusion
probabilities

RANDOM CONFIGURATION: probabilities remain almost constant
COMPACT CONFIGURATION: probabilities for close units decrease
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Simulation - sampling

100 samples of size n = 40 are drawn from each dataset.
The initial inclusion probabilities are constant: 7, = n/N for all units .

Example (one simulated sample):

m

| I

The Voronoi tessellation is also plotted
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Results - HT estimates

The thick vertical line marks the true total ¥ = 200

Compact Ran
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MSE:
@ compact configuration: MSE, = 215
@ random configuration: MSE, = 928
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Results - variance of Voronoi polygons

It is a measure of how well spread samples are (the smaller the
better)
1 n
) == (- 1)
n h=1
v: sum of the inclusion probabilities of all units in the 4th Voronoi

polygon
E(Vh) =1

Compact Random
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Future work

@ We look for the communication between seemingly separated
worlds:
spatial entropy
and
sampling entropy

@ Deepen the means of considering the important contribution
contained in partial spatial information

@ Explore ways for estimating the probabilites entering spatial
entropy
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Thank you!
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