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Motivation: Poverty Mapping
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Recent Unit-level Methodologies

I The World Bank method
(Elbers et al., 2003, Econometrica)

I The Empirical Best Predictor (EBP) method
(Molina & Rao, 2010, CJS)

I EBP based on normal mixtures
(Lahiri and Gershunskaya, 2011; Elbers & Van der Weide, 2014)

I Methods based on M-Quantiles
(Marchetti et al., 2012, CSDA)
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EBP Approach for Poverty Indicators

I Point of departure: Nested error regression model (Battese et. al.
(1988, JASA))

Notation: (k =domain, i =individual)

yik = x
T
ikβ + z

T
ikuk + εik , i = 1, ..., nk , k = 1, ...,D

I Use sample data to estimate β, σu, σε, uk

I Generate u∗k ∼ N(0, σ̂2
u ∗ (1− γk)) & ε∗ik ∼ N(0, σ̂2

ε )

Micro-simulating a synthetic population:

I Generate a synthetic population under the model a large number of
times each time estimating the target parameter

I Linear and non-linear indicators can be computed
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Principles and Approaches

1 Information criteria based on likelihood functions: Applicable
to parametric model-based problems

I Akaike information criterion (AIC)

I Finite-sample corrected AIC (CAIC)

I Bayesian information criterion (BIC)

I Hannan and Quinn criterion (HQ)

I Bridge criterion (BC)

2 Methods that do not require parametric assumptions

I Cross-validation (CV)

3 Methods from other perspectives
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Akaike Information Criterion (AIC)

AIC (M) = −2 log(l(M)) + 2P

I l(M) is the model likelihood ⇐= Loss function

I P measurement of model complexity ⇐= Penalty term

I The model with the lowest value of AIC is selected.
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The Log-likelihood for Mixed Models

Marginal approach:

E (Y) = θ = xβ

Var(Y) = Vy = Z′ΣuZ + Σe

log(lm(M)) = −1

2
D log(2π)− 1

2
log |Vy | −

1

2
(Y − θ)

′
V−1y (Y − θ)

Conditional approach:

E (Y|u) = µ = xβ + Zu

Var(Y|u) = Vy |u = Σe

log(lc(M)) = −1

2
D log(2π)− 1

2
log |Vy |u| −

1

2
(Y−µ)

′
V−1y |u(Y−µ)

Variable and transformation selection for SAE 9 (28)



Motivation
Model selection approaches

Use of transformations
Combined estimators

The Penalty Term

Different concepts or terms have been used:

I The number of parameters in the model.

I The Degrees of Freedom.

I The Divergence.

I The Effective Degrees of Freedom.

I The Generalized Degrees of Freedom

Most of these five terms coincides for simple models as the normal
linear regression model but no for complex models as constrained,
lasso or mixed models (Kato, 2009; Rueda, 2013; Tibshirani and
Taylor, 2012).
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The Calculation of GDF

I The Generalized Degrees of Freedom (GDF) is a measure of
the sensitivity of each fitted value, m̂d to perturbation in the
corresponding observed value Yd , applicable to complex
modeling procedures where it is assumed that EYd = md .

GDF =
D∑

d=1

∂E (m̂d)

∂md

(Ye, 1998;Vaida and Blanchard, 2005;You et al., 2016)
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Criteria for the Model Selection

GAIC (M) = −2 log(l(M̂)) + ĜDF

I l(M̂): l(M) depends on the m(= EY ) and the variance
parameters which are estimated under model M.

I ĜDF : although a known quantity in simple models, it is
unknown in complex modeling procedures. GDF is estimated

by bootstrap: ĜDF .

I Different combinations of conditional and marginal
log-likelihood and expectations to estimate GDF have been
defined in the literature.

I The model with the lowest value of GAIC is selected.
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GAIC (M) for Linear Mixed Models

I mGAIC (M) = −2 log(lm(M̂)) + mĜDF ,

I cGAIC (M) = −2 log(lc(M̂)) + cĜDF ,

I yGAIC (M) = −2 log(lc(M̂)) + yĜDF ,

yGDF =
D∑

d=1

ni∑
j=1

∂EY (µ̂ij)

∂θij

yGDF is defined from the conditional mean estimator and the
marginal expectation (You et al. (2016)).

I Pferfferman (2013) and Rao and Molina (2015) for a SAE context!
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Our Proposals: lx(M) and xGDF

We consider the quasi-loglikelihood (M.J. Lombard́ıa et. al. 2017)
from a normal model with mean µ and Variance Vy :

log(lx(M)) = −1

2
D log(2π)− 1

2
log |Vy | −

1

2
(Y − µ)

′
V−1y (Y − µ).

and xGDF = yGDF defined from the conditional mean estimator
and the marginal expectation

xGDF =
D∑

d=1

ni∑
j=1

∂EY (µ̂ij)

∂θij

=
D∑
i=1

ni∑
j=1

ni∑
k=1

V ijk
y CovY (µ̂ij , yik)
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Approximation of xGDF
1. Fit the model and obtain β̂, σ̂2

u and σ̂2
e .

2. Repeat B times (b = 1, . . . ,B)

2.1 Generate u∗ij and e∗ij from N(0, σ̂2
u) and N(0, σ̂2

e ) respectively.

Construct the bootstrap model y
∗(b)
ij = µ

∗(b)
ij + e

∗(b)
ij , with

µ
∗(b)
ij = x′ij β̂ + u

∗(b)
ij , and the variance-covariance matrix V̂y .

2.2 From each bootstrap sample {y∗(b)ij , xij}, calculate

µ̂
∗(b)
ij = µ̂d(y

∗(b)
ij , xij) = x′ij β̂

∗(b)
+ û
∗(b)
d .

3. Approximate xGDF by Monte Carlo,

x̂GDF =
1

B − 1

B∑
b=1

D∑
i=1

ni∑
j=1

ni∑
k=1

V̂ ijk
y (µ̂

∗(b)
ij − ¯̂µ

∗
ij)(y

∗(b)
ik − ȳ∗ik)

where ¯̂µ
∗
ij = 1

B

∑B
b=1 µ̂

∗(b)
ij and ȳ∗ik = 1

B

∑B
b=1 y

∗(b)
ik , V̂ ijk

y is the

jk−element of the inverse of V̂i = Z′iΣ̂uZi + σ̂2
e I ni .
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Proposed xGAIC

We define the generalized Akaike Information Criteria (GAIC ) for a
small area model as follows:

M : yij = x′ijβ + ui + ei , i = 1, . . . ,D; j = 1, . . . , ni

GAIC (M) = −2 log(l(M)) + GDF .

Here, we propose to combine lx(M) and xĜDF by considering the
random effect and the variability between areas to define:

xGAIC = −2 log(lx(M̂)) + xĜDF .

Variable and transformation selection for SAE 16 (28)



Motivation
Model selection approaches

Use of transformations
Combined estimators

Use of transformations
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Model Requirements

I EBP relies on Gaussian assumptions :

X uk
iid∼ N(0, σ2

u), the random area-specific effects

X εik
iid∼ N(0, σ2

ε ), the unit-level error terms, uk ⊥ εik

I What if these fail?

I Option 1: EBP formulation under an alternative distribution
(Molina, I et al., 2015)

I Option 2: Explore the use of transformations
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First Selection of Transformations

I Shifted transformations
I Log-shift

I Power transformations
I Box-Cox
I Exponential
I Sign power
I Modulus
I Dual power
I Folder power
I Convex-to-concave

I Multi-parameter transformations
I Johnson
I Sinh-arcsinh
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Transformations for the EBP Method

Log-Shift Transformation (λ) (Royston et al. 2011)

Tλ(yij) = log(yij + λ),

Box-Cox Transformation (λ) (Box & Cox, 1964)

Tλ(yij) =

{
(yij+s)λ−1

λ , λ 6= 0
log(yij + s), λ = 0

,

Dual Power Transformation (λ) (Yang, 2006)

Tλ(yij) =

{
(yij+s)λ−(yij+s)−λ

2λ if λ > 0;

log(yij + s) if λ = 0.

with λ the transformation parameter and yij + s > 0

Variable and transformation selection for SAE 20 (28)



Motivation
Model selection approaches

Use of transformations
Combined estimators

The EBP Approach under Transformations

1. Select Tλ(yij) = y∗ij and obtain the transformed sample data

2. Use transformed sample data to fit the model and obtain
β̂, σ̂2u, σ̂

2
e and predict ūj = E (uj |ys) for in-sample domains

3. Use census data to micro-simulate L synthetic populations by

y∗ij = xTij β̂ + ūj + uj + eij ,

where uj ∼ N(0, σ̂2u ∗ (1− γj)) and eij ∼ N(0, σ̂2e )

4. Back-transform to the original scale

5. Calculate the target linear and non-linear indicators in each
replication and average over L
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Combined estimators
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Some Ideas

I Model-based estimators are derived from models defined using
the auxiliary information.

I In SAE, we can talk about estimation selection instead of
model selection.

I Obtaining different small areas estimators from a collection of
models.

I Selecting the best estimator: xGAIC measure combined with
REML for transformatios (for mixed models).
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Estimation Method (λ)

Residual Maximum Likelihood (REML) (Gurka et al., 2006)

I Using a scaled version of the transformation

I This allows for applying standard maximum likelihood theory

LREML(Tλ, λ|θ) = −n

2
log(2π)− 1

2

D∑
i=1

log|V i |

− 1

2
log
∣∣∣ D∑
i=1

X
′

i
V−1i X

′

i

∣∣∣
− 1

2

D∑
i=1

[Tλ(y i )− Xiβ]TV−1i [Tλ(y i )− Xiβ]
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Estimation Algotithm (λ)

REML Algorithm for the EBP Method

1. Choose a transformation

2. Define a parameter interval for λ

3. Set λ to a value inside the interval

4. Find the best model by using xGAIC

5. Maximize the residual log-likelihood function with respect to θ
conditional on the fixed λ

6. Repeat 3 and 4 until a maximum λ̂ is found

7. Apply the EBP method (under optimal model)
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Remarks and Future Research Direction

Remarks:

I Use of transformations improves the performance of the EBP
and fit of the model (Rojas et. al.)

I xGAIC outperforms other GAIC measures in the SAE context
and works for non linear models

Next steps:

I Proposed bootstrap approach taking into account uncertainty
from the multi-parameter parameter estimation algorithm.
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Thank you very much for your attention.

Natalia Rojas-Perilla (natalia.rojas@fu-berlin.de)
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