ITACOSM 2019 Florence, June 5 2019

Using entropic distance for large area definition in small area estimation methods

Livio Fenga fenga@istat.it Fabrizio Solari

solari@istat.it

Italian National Statistical Institute

Model group definition in small area estimation problems

Complexity-Invariant Distance for time series

Experimental study on Italian LFS

Concluding remarks

Using entropic distance for large area definition in small area estimation methods

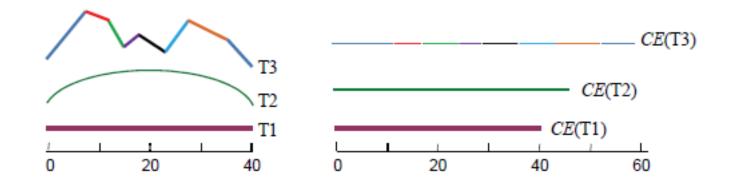
- The macro-area is defined as the set of small areas for which a common model is specified (and fitted). It is connected to the model group concept
- Often NSIs identify macro-areas using preexistent territorial delimitations (e.g., regions, states, etc,), or macro regions which are geographically meaningful (e.g. north, center, south)
- This could be a practical but not always an optimal solution
- In this presentation a solution for the definition of an optimal macroarea for each small area is proposed

- The goal is to find sets of small areas with similar "behaviour" with respect to the model
- This could be done analyzing either predicted or residual values under the model and including in the same macro-area all the small areas with similar residuals (or predicted) values
- Problems:
 - It is not advisable to use the same data for 1) compute model residuals (or predicted values) to define the macro-areas and 2) fitting the model using the macro-areas defined in 1)
 - Ikely different macro-areas are expected for different times causing consistent changes in the estimates from time to time

Using entropic distance for large area definition in small area estimation methods

- When time series data are available, it is more appropriate considering the similarity between residual (or predicted) time series data instead of considering only one point in time data
- Similarities between time series data can be evaluated using the Complexity-Invariant Distance (Batista, Keogh, Tataw & de Souza, 2014)

Ideally a time series is "stretched" until it becomes a straight line. As a result of that, a complex time series should result in a longer line than a simple time series



In the case of the Euclidean distance between two time series Q and C ED(Q,C)

complexity-invariance is achieved by introducing a correction factor:

 $CID(Q,C) = ED(QC) \times CF(Q,C)$

- CF = complexity correction factor
- \succ CF(Q,C) = max(CE(Q), CE(C)) / min max(CE(Q), CE(C))

CE(·) complexity estimate of time series C

- CF accounts for differences in the complexities of the time series in order to set apart time series with different complexities
- Under same complexity time series, CID degenerates to the Euclidean distance

- LFS quarterly data from 2004 to 2014
- Direct estimates and sampling variances for employment and unemployment rate at Local Labour Market Area level
- Smoothing of sampling variances
- > 221 out of 611 LLMAs are sampled for all the 44 quarters
- Residual and predicted values from a standard area level LM are computed (auxiliary variables: 12 cross-classification of age classes and sex)

- For both predicted and residuals macro-areas are defined using the Complexity-Invariant Distance:
 - for the generic small d area an ad hoc macro-area is defined including all the areas whose distance from d is less than a given treshold
 - a minimum number of 30 small areas is included in each ad hoc macro-area

Comparison of the following model groups:

Italy

- 3 large areas (North, Centre, South)
- 5 large areas (North-East, North-West, Centre, South, Sicily + Sardinia)
- ad hoc macro-area for each small area using the complexityinvariant distance for the residual time series
- ad hoc macro-area for each small area using the complexityinvariant distance for the predicted values time series

Using entropic distance for large area definition in small area estimation methods

Experimental study

- Standard FH model is adopted (Fay & Herriot, 1979):
- $\widehat{Y}_d = \overline{Y}_d + e_d$ (sampling model)
- $\overline{Y}_d = \overline{X}_d^T \mathbf{\beta} + v_d \qquad \text{(linking model)}$
- v_d , e_d are independent, $v_d \sim N(0, \sigma_v^2)$, $e_d \sim N(0, \sigma_d^2)$, σ_d^2 is known for all d

The EBLUP of
$$\overline{\mathbf{Y}}_{d}$$
 is $\tilde{\overline{Y}}_{d}(\tilde{\sigma}_{v}^{2}) = \gamma_{d}\overline{Y}_{d} + (1 - \gamma_{d})\overline{x}_{d}^{T}\hat{\beta}(\tilde{\sigma}_{v}^{2}),$

where
$$\gamma_d = \sigma_v^2 / (\sigma_v^2 + \sigma_d^2), \ 0 \le \gamma_d \le 1.$$

Using entropic distance for large area definition in small area estimation methods

Florence, June 5 2019

Results: employment rate estimation

AARE

model group					
overall country	3 large areas	5 large areas	ad hoc large areas (residuals)	ad hoc large areas (predicted)	
0.047150	0.044768	0.046352	0,050176	0.044499	
(1.053)	(1.000)	(1.035)	(1,121)	(0.994)	

ASE

model group					
overall country	3 large areas	5 large areas	ad hoc large areas (residuals)	ad hoc large areas (predicted)	
0.000477	0.000414	0.000466	0,000559	0.000403	
(1.152)	(1.000)	(1.125)	(1,349)	(0.972)	

13

Using entropic distance for large area definition in small area estimation methods

Florence, June 5 2019

Results: unemployment rate estimation

AARE

model group					
overall country	3 large areas	5 large areas	ad hoc large areas (residuals)	ad hoc large areas (predicted)	
0.276173	0.268203	0.276801	0,285767	0.258059	
(1.030)	(1.000)	(1.032)	(1,065)	(0.962)	

ASE

model group				
overall country	3 large areas	5 large areas	ad hoc large areas (residuals)	ad hoc large areas (predicted)
0.000473	0.000455	0.000458	0,000503	0.000445
(1.040)	(1.000)	(1.007)	(1,104)	(0.977)

14

Using entropic distance for large area definition in small area estimation methods

Florence, June 5 2019

- The macro-areas built from the complexity-invariant distance matrix of the predicted values time series outperform the standard way of defining model groups
- Not good results are produced using the complexity-invariant distance matrix of the residuals
- Likely, the residuals are not "white" residuals and some pre-whitening technique should be applied before using them as an input for the complexity-invariant distance matrix

- Improving model complexity:
 - Introduction of a spatial correlation structure in the model specification (Petrucci & Salvati, 2006; Pratesi & Salvati, 2008)
 - Modelling time series data (Maruenda, Molina & Morales, 2013; Rao & Yu, 1994; Singh, Mantel & Thomas, 1991)
- The complexity-invariant distance can be used as an alternative distance matrix between the areas
- Define an automatic way to find an optimal value of the treshold for the complexity-invariant distance

Batista, G.E., Keogh, E.J., Tataw, O.M., and de Souza, V.M.A. (2014). CID: an efficient complexity-invariant distance for time series. Data Mining and Knowledge Discovery, 28(3), 634-669.

Fay, R.E., and Herriot, R.A. (1979). Estimation of income from small places: an application of James-Stein procedures to census data. Journal of the American Statistical Association, 74, 269-277.

Marhuenda, Y., Molina, I., and M orales, D. (2013). Small area estimation with spatio-temporal Fay-Herriot models. *Computational Statistics and Data Analysis*, 58, 308-325.

Petrucci, A., and Salvati, N. (2006). Small area estimation for spatial correlation in watershed erosion assessment. Journal of Agricultural, Biological and Environmental Statistics, 11, 169-182.

Pratesi, M., and Salvati, N. (2008). Small area estimation: the EBLUP estimator based on spatially correlated random area effects. *Statistical Methods & Applications*, 17, 113-141.

Rao, J.N.K., and Yu, M. (1994). Small area estimation by combining time series and cross-sectionaldata. *Canadian Journal of Statistics*, 22, 511-528. Singh, A.C., Mantel, H.J., and Thomas, B.W. (1994), Time series EBLUPs for small areas using survey data. *Survey Methodology*, 20, 33–43.

18

Thanks for your attention!!!

