ADAPTIVE WEIGHTING ESTIMATION ON A BIPARTITE GRAPH

MARTINA PATONE
LI-CHUN ZHANG

Southampton

Population graph $G=(F, U ; A)$,
F : sampling frame (pink); U : population of motifs (grey).

Bipartite Incident Graph.

Sample BIG, $G_{s}=\left(s \cup \alpha(s) ; A_{s}\right)$,

Incident reciprocal observation.

Incident ancestral observation.

Sample BIG, $G_{s}=\left(s \cup \alpha(s) ; A_{s}\right)$,

Incident reciprocal observation.
Incident ancestral observation.

Let θ be the parameter of interest. We have:

$$
\theta=\sum_{i \in U} y_{i}=\sum_{k \in F} z_{k}=\sum_{(k i) \in A} w_{k i} y_{i},
$$

where z_{k} is a constructed measure for each unit in F, which is given by

$$
z_{k}=\sum_{i \in \alpha(k)} w_{k i} y_{i} \quad \text { and } \quad \sum_{k \in \beta(i)} w_{k i}=1
$$

Yhat: (Horvitz and D. J. Thompson, 1952)

$$
\hat{\theta}_{y}=\sum_{i \in \alpha(s)} \frac{y_{i}}{\pi_{(i)}}=\sum_{i \in U} \frac{\delta_{(i)}}{\pi_{(i)}} y_{i}
$$

Zhat: (Birnbaum and Sirken, 1965)

$$
\hat{\theta}_{z}=\sum_{k \in s} \sum_{i \in \alpha(s)} \frac{w_{k i} y_{i}}{\pi_{k}}=\sum_{k \in F} \frac{\delta_{k}}{\pi_{k}} z_{k}
$$

Phat: (Birnbaum and Sirken, 1965)

$$
\begin{aligned}
& \hat{\theta}_{p}=\sum_{(k i) \in A_{s}} \frac{I_{k i} w_{k i}}{p_{(k i)}} \cdot \frac{y_{i}}{\pi_{k}}=\sum_{k \in s} \sum_{i \in \alpha(s)} \frac{W_{k i} y_{i}}{\pi_{k}}=\sum_{k \in s} \frac{Z_{k}}{\pi_{k}} . \\
& W_{k i}=\frac{w_{k i} I_{k i}}{p_{(k i)}}, \text { with } I_{k i}=1 \text { if } k=\min (\beta(i) \cap s) .
\end{aligned}
$$

Zhat: $w_{k i}=1 / d_{i}$;
Phat: $W_{k i}=\frac{w_{k} I_{k i}}{p_{(k i)}}$, with $I_{k i}=1$ if $k=\min (\beta(i) \cap s)$.

Let $i=10, d_{10}=3$. Assume SRS of size 2 .

$$
\left(p_{(1,10)}, p_{(3,10)}, p_{(4,10)}\right)=\left(1, \frac{2}{3}, \frac{1}{3}\right) .
$$

Equal-share weights w and priority weights W for the edges incident to $i=10$.

s	$w_{1,10}$	$w_{3,10}$	$w_{4,10}$
$\{1,3\}$	$1 / 3$	$1 / 3$	-
$\{3,4\}$	-	$1 / 3$	$1 / 3$
$\{2,4\}$	-	-	$1 / 3$

s	$W_{1,10}$	$W_{3,10}$	$W_{4,10}$
$\{1,3\}$	$1 / 3$	0	-
$\{3,4\}$	-	$1 / 2$	0
$\{2,4\}$	-	-	1

Let the adaptive weight be given by

$$
W_{k i}=h(w, s, t) \quad \text { for }(k i) \in A_{s},
$$

where w is the set of initial fixed weights and t denotes generically the auxiliary information that is extraneous to G_{s}.

The adaptive weighting estimator (AWE) based on W is given by

$$
\hat{\theta}_{A}=\sum_{k \in s} \frac{Z_{k}}{\pi_{k}}=\sum_{(k i) \in A_{s}} \frac{W_{k i} y_{i}}{\pi_{(k i)}},
$$

where $\pi_{(k i)}=\pi_{k}$.

Proposition 1. The AWE is unbiased for θ provided, for each $i \in U$,

$$
\sum_{k \in \alpha(i)} E\left(W_{k i} \mid \delta_{k}=1\right)=1 .
$$

Proposition 2. The variance of an unbiased AWE can be given by

$$
V\left(\hat{\theta}_{A}\right)=V\left(\hat{\theta}_{z}\right)+\Delta
$$

where $V\left(\hat{\theta}_{z}\right)$ is the variance of Zhat based on the initial weights w, and

$$
\Delta=\sum_{k \in F} \sum_{l \in F} \frac{\pi_{k l}}{\pi_{k} \pi_{l}} \sum_{i \in \alpha(k)} \sum_{j \in \alpha(l)}\left(E\left(W_{k i} W_{l j} \mid \delta_{k} \delta_{l}=1\right)-w_{k i} w_{l j}\right) y_{i} y_{j} .
$$

$W_{k i}=h(w, s, t)$

By Prioritisation: let $t=I_{k i}$ and $p_{(k i)}=\operatorname{Pr}\left(I_{k i}=1 \mid \delta_{k}=1\right)$,

$$
W_{k i}=\frac{w_{k i} I_{k i}}{p_{(k i)}}
$$

By Resharing: let $t=g_{(k i)}$,

$$
W_{k i}=w_{k i} g_{(k i)}
$$

Let $G_{1}=\left(F \cup U, A_{1}\right)$ and $G_{2}=\left(F \cup U, A_{2}\right)$.
$|F|=54$ and $|U|=310$.
Assume SRS of size m from F. Let $\theta=|U|$.

Degree distribution for the sampling units in G_{1}.

Degree distribution for the sampling units in G_{2}.

$$
W_{k i}=h(w, s, t)=\operatorname{id}(w)=w_{k i}
$$

1. Equal-share weights (Birnbaum and Sirken, 1965): $w_{k i}=\frac{1}{d_{i}}$;
2. Unequal-share weights: $w_{k i}=\frac{1}{d_{k}} / \sum_{l \in \beta(i)} \frac{1}{d_{l}}$.

True and estimated variance of the AWE over 100 simulations for two different choices of fixed weights: (green-black) - equal share; (red-purple) - unequal share.

Phat: $W_{k i}=\frac{w_{k i} I_{k i}}{p_{(k i)}}$, with $I_{k i}=1$ if $k=\min (\beta(i) \cap s)$.
ascendent

descendent

Average of the Priority AWE (BS, 1965) over 100 simulations for the graph G_{1} with different ordering of the frame.

The bound for unbiasedness is the maximum m which guarantees that, for any motif $i \in U$:

$$
\operatorname{Pr}[k, l \in s \mid m]<1, \text { where } k, l \in \beta(i) \text { with } k \neq l .
$$

GENERAL AND FLEXIBLE SAMPLING STRATEGY NEW INSIGHTS ON THE EXISTING ESTIMATORS

MORE EXAMPLES OF AWE

THANKS

