#### Using New Forms of Data in Small Area Estimation

Nikos Tzavidis\* & Angela Luna<sup>†</sup> Southampton Statistical Sciences Research Institute University of Southampton

> Jessica Steele & Kristine Nilsen WorldPop University of Southampton

> > ITACOSM Florence, June 5-7 2019

The research is supported by the MAKSWELL grant - EU-Horizon 2020

https://www.makswell.eu

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)」

\*Presenting author <sup>†</sup>Presenting author

## Introduction

<□ > < @ > < E > < E > E のQ ? 2

· Recent interest in the use of new data forms in SAE

- Remotely sensed data
- Mobile phone (CDR) data
- Web-scraped data
- Bank transaction data
- Used as possible source of
  - Response data
  - Auxiliary information

### Motivating the use of new data forms

- Potentially useful in low resource settings
- A typical data scenario in such settings
  - Survey data on demographic & income/wealth available

(ロ)、(個)、(目)、(目)、(目)、の(C)3

- Census data unavailable or infrequently updated
- Administrative data unavailable

## New forms of data - Some pros and cons

#### <u>Pros</u>

- Dynamically updated covariates (compare this to Census data)
- Reduced cost of data collection
- More flexible definition of geography

#### <u>Cons</u>

- Not clear how to extend definition of geography to domains
- Errors in data more difficult to quantify and account for
- Coverage / representativity
- Limited to what can be measured from new data sources
- No obvious reason why covariates correlate with the outcome

## Literature

- Growing body of literature using new data forms
- Targets of estimation at very fine spatial scales
- In most cases mainstream small area literature is ignored with potential consequences (see later in the presentation)

<□> <@> < E> < E> E のQC 5

• Some exceptions (see Marchetti et al., 2015; Schmid et al., 2017; Münnich et al., 2019)

## First observations

- Various, mainly supervised methods (Hastie et al., 2008)
- Methodology usually combines survey data with new forms of data and fits a model then used to predict target parameters

- Validation uses correlation plots with estimates derived via alternative data sources
- Commonly used models are not well described
- Challenging for research reproducibility

# Presentation aims

• No new methodology is introduced

#### <u>Part 1</u>

- Use SAE model-based methods with new forms of data as covariates
- Derive SAE point & MSE estimates

#### Part 2

- Attempt to decipher a typical model used outside the SAE literature
- Discuss possible issues with these models
- Present possible solutions
- Assess the impact of possible model misspecification on SAE

### Data & Models

- New forms of data processed at very fine spatial levels
- Tempting to specify models at the level the data is available
- Likely to lead to synthetic estimates (implications not discussed in the non-SAE literature)
- Here we use area-level models by aggregating data at the target geography

(ロ)、

### Area level models: The Fay-Herriot model

Sampling model

$$\hat{\theta}_i^{direct} = \theta_i + e_i$$

- $\hat{\theta}_i^{direct}$  is a direct design-unbiased estimator
- *e<sub>i</sub>* is the sampling error of the direct estimator

Linking model

$$\hat{\theta}_i^{direct} = \mathbf{x}_i \boldsymbol{\beta} + u_i + e_i, \quad i = 1, \dots, m,$$

where  $u_i \sim N(0, \sigma_u^2)$  and  $e_i \sim N(0, \sigma_{e_i}^2)$ , with  $\sigma_{e_i}^2$  assumed known

### Area level models: The Fay-Herriot estimator

The EBLUP under the Fay-Herriot (FH) model is

$$egin{aligned} \hat{ heta}_i^{\mathsf{FH}} &= oldsymbol{x}_i^T \hat{oldsymbol{eta}} + \hat{u}_i \ &= \gamma_i \hat{ heta}_i^{\mathsf{direct}} + (1 - \gamma_i) oldsymbol{x}_i^T \hat{oldsymbol{eta}}, \end{aligned}$$

- Analytic MSE estimator of  $\hat{\theta}_i^{FH}$  Prasad & Rao (1990)
- Alternatively use bootstrap (parametric under the FH model)

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 の < で 10</p>

Case study

Poverty estimation in Bangladesh using Wealth Index (WI) as proxy

Aim: Estimate average WI by Upazila (Level 3)

Survey Data Sources - DHS 2014

- n = 17K households
- Stratified 2-stage cluster design
- At least one cluster selected in 365/508 (72%) Upazilas

(ロ) (個) (E) (E) E のQC 11

- Response: WI computed via PCA
- Average Upazila sample-size  $\bar{n}_i = 34$

# Case study

#### Auxiliary data sources

- Remote sensing covariates
  - Processed at 1km spatial resolution
  - Aggregated at Upazila level
  - Enhanced vegetation index (EVE)
  - Elevation (ELEV)
  - Accessibility to areas with more than 50K people (ACC)

◆□ → ◆□ → ◆ Ξ → ◆ Ξ → ○ ● ○ 12

- Night time lights (NL)
- CDR data: Ongoing

### Case study - Direct and FH estimation

- Survey weighted direct estimates of  $\overline{WI}_i$  at upazila level.
- Estimated variances of the direct:
  - Ultimate cluster variance (UCV) estimator
  - DEFT (One cluster in some Upazilas  $\rightarrow$  UCV not applicable)
  - Smoothing via *GVF*(*WI*<sup>1,1/2,1/3</sup>, *n*<sup>1,1/2</sup>)
  - Ignoring PCA variability
- EBLUPs & Prasad-Rao MSEs under a FH model with RS covariates.





<ロ> (四) (四) (三) (三) (三) (13)

### Case study - Non-SAE literature

- Not easy to decipher the models used Black box approach
- We use code from one of these papers for comparison reasons
- A Linear Latent Gaussian Model at Upazila level is used
- R-INLA (approx Bayesian inference) used for estimation
- The model also allows for spatial correlation
- We turn this off for direct comparison with FH estimates

4 日 × 4 団 × 4 団 × 4 団 × 目 の 4 で 14

### Case study - Non-SAE literature - Model Choices

- In all cases,  $u_i$  are iid with variance  $\sigma_u^2$
- $e_i$  are independent with variance  $\sigma_{e_i}^2$
- Normality of both is assumed

INLA 1  $\sigma_{e_i}^2 = \sigma_e^2$  assumed unknown INLA 2  $\sigma_{e_i}^2 = s_i \sigma_e^2$ .  $s_i = \frac{v_i}{v_i}$  fixed but  $\sigma_e^2$  unknown. INLA 3 INLA 2 with a highly informative prior for  $\tau = 1/\sigma_e^2$ .  $\tau \sim Gamma(shape = 25^2/0.1, rate = 25/0.1)$ , therefore  $E(\tau) = 25 = 1/\bar{v_i}$ ,  $V(\tau) = 0.1$ 

- Literature on HB framework for FH models (see You & Chapman, 2006 ; Poletini, 2017)
- Not tested in this presentation

## Case study - Non-SAE literature - Possible pitfalls

◆□ → ◆□ → ◆ Ξ → ◆ Ξ → ○ へ ○ 16

- INLA 1 is assumed by the paper
- One observation per Upazila
- Why expect the model to be identifiable ?
- INLA 2 introduces a heteroscedastic structure
- However,  $\sigma_e^2$  unknown  $\rightarrow$  identifiability?
- INLA 3 uses a highly informative prior on  $\sigma_e^2$

### Case study - Results fixed effects

- Same spec as is the non-SAE paper
- Small differences in the estimates of the fixed effects
- FH & INLA 3 almost identical

| Variable    | Fay-Herriot |       | INLA 1   |       | INLA 2   |       | INLA 3   |       |
|-------------|-------------|-------|----------|-------|----------|-------|----------|-------|
|             | Estimate    | S.E.  | Estimate | S.E.  | Estimate | S.E.  | Estimate | S.E.  |
| (Intercept) | 0.922       | 0.139 | 0.941    | 0.148 | 0.861    | 0.135 | 0.921    | 0.138 |
| evi         | 0.000       | 0.000 | 0.000    | 0.000 | 0.000    | 0.000 | 0.000    | 0.000 |
| elev        | -0.152      | 0.030 | -0.142   | 0.032 | -0.166   | 0.028 | -0.152   | 0.030 |
| nl          | 0.385       | 0.030 | 0.372    | 0.031 | 0.409    | 0.030 | 0.386    | 0.030 |
| асс         | -0.084      | 0.034 | -0.090   | 0.036 | -0.068   | 0.033 | -0.084   | 0.034 |

## Case study - Results variance components

• Large differences in the estimated variance components

| Var.comp               | Fay-Herriot | INLA 1 | INLA 2 | INLA 3 |
|------------------------|-------------|--------|--------|--------|
| $\hat{\sigma}_{e}^{2}$ | 0.0391      | 0.0865 | 0.1121 | 0.0401 |
| $\hat{\sigma}_{u}^{2}$ | 0.1091      | 0.0759 | 0.0423 | 0.1059 |

- FH & INLA 3 almost identical
- INLA 1 & 2 differ
- Sensitivity analyses, change the starting values of  $\sigma_e^2$
- Other starting values set to default INLA ones



### Case study - Impact on SAE point estimation



- Positive correlation with FH estimates for INLA 1
- Observe correlation of FH estimates with INLA 3 (highly informative prior)

### Case study - Impact on MSE estimation



- Clear impact on MSE estimates
- Observe distribution of FH analytic MSE estimates with INLA 3 (highly informative prior) MSE estimates (posterior distribution)

# Concluding remarks

New forms of data offer significant potential for SAE

- Dynamic updating of estimates
- Possibly reduced costs
- Flexible definition of geography
- Risks from black box use of powerful algorithmic tools
- Lack of sensitivity analyses  $\rightarrow$  misleading results
- Tempting to produce estimates at very low geographies

Next steps

- Work with CDR data
- Challenges with the definition of geography
- Consider other models as alternatives to FH (see Poletini, 2017)

Thank you for your attention. n.tzavidis@soton.ac.uk a.luna.hernandez@soton.ac.uk