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Introduction

® Recent interest in the use of new data forms in SAE

Remotely sensed data
Mobile phone (CDR) data
Web-scraped data

Bank transaction data

® Used as possible source of

® Response data
® Auxiliary information



Motivating the use of new data forms

® Potentially useful in low resource settings
® A typical data scenario in such settings

® Survey data on demographic & income/wealth available
® (Census data unavailable or infrequently updated
® Administrative data unavailable



New forms of data - Some pros and cons

Pros
e Dynamically updated covariates (compare this to Census data)
® Reduced cost of data collection

® More flexible definition of geography

Cons
® Not clear how to extend definition of geography to domains
® Errors in data more difficult to quantify and account for

e Coverage / representativity

Limited to what can be measured from new data sources

No obvious reason why covariates correlate with the outcome



Literature

Growing body of literature using new data forms
Targets of estimation at very fine spatial scales

In most cases mainstream small area literature is ignored with
potential consequences (see later in the presentation)

Some exceptions (see Marchetti et al., 2015; Schmid et al.,
2017; Miinnich et al., 2019)



First observations

Various, mainly supervised methods (Hastie et al., 2008)

Methodology usually combines survey data with new forms of
data and fits a model then used to predict target parameters

Validation uses correlation plots with estimates derived via
alternative data sources

Commonly used models are not well described

Challenging for research reproducibility



Presentation aims

® No new methodology is introduced

Part 1

® Use SAE model-based methods with new forms of data as
covariates

® Derive SAE point & MSE estimates
Part 2

® Attempt to decipher a typical model used outside the SAE
literature

® Discuss possible issues with these models
® Present possible solutions
® Assess the impact of possible model misspecification on SAE



Data & Models

New forms of data processed at very fine spatial levels
Tempting to specify models at the level the data is available

Likely to lead to synthetic estimates (implications not
discussed in the non-SAE literature)

Here we use area-level models by aggregating data at the
target geography



Area level models: The Fay-Herriot model

Sampling model '
eldlrect — 9[, + g

° HAf’ireCt is a direct design-unbiased estimator
® ¢; is the sampling error of the direct estimator
Linking model
pdirect __ -
05 =x;8+u+e, i=1,...,m,

where u; ~ N(0,02) and ej ~ N(0,02), with o2 assumed known



Area level models: The Fay-Herriot estimator

The EBLUP under the Fay-Herriot (FH) model is
Off = x[ B+ &
= it + (1 — 4i)x] B,

® Analytic MSE estimator of éIFH - Prasad & Rao (1990)

e Alternatively use bootstrap (parametric under the FH model)



Case study

Poverty estimation in Bangladesh using Wealth Index (WI) as proxy

Aim: Estimate average WI by Upazila (Level 3)

Survey Data Sources - DHS 2014

® n = 17K households

Stratified 2-stage cluster design

At least one cluster selected in 365/508 (72%) Upazilas
Response: WI computed via PCA

Average Upazila sample-size n; = 34



Case study

Auxiliary data sources

® Remote sensing covariates

Processed at 1km spatial resolution

Aggregated at Upazila level

Enhanced vegetation index (EVE)

Elevation (ELEV)

Accessibility to areas with more than 50K people (ACC)
Night time lights (NL)

® CDR data: Ongoing



Case study - Direct and FH estimation

® Survey weighted direct estimates of WI; at upazila level.

® Estimated variances of the direct:
® Ultimate cluster variance (UCV) estimator
® DEFT (One cluster in some Upazilas — UCV not applicable)
e Smoothing via GVF(WI'/>1/3 b1/

Ignoring PCA variability

e EBLUPs & Prasad-Rao MSEs under a FH model with RS
covariates.
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Case study - Non-SAE literature

Not easy to decipher the models used - Black box approach
We use code from one of these papers for comparison reasons
A Linear Latent Gaussian Model at Upazila level is used
R-INLA (approx Bayesian inference) used for estimation

The model also allows for spatial correlation

We turn this off for direct comparison with FH estimates



Case study - Non-SAE literature - Model Choices

® In all cases, u; are iid with variance o2

® ¢; are independent with variance agl_

® Normality of both is assumed
INLA 1 a =02 assumed unknown
INLA 2 0 = si0 2. si = 2 fixed but a unknown.
INLA 3 INLA 2 with a hlghly |nformat|ve prior for

T=1/02.

7 ~ Gamma(shape = 252 /0.1, rate = 25/0.1),

therefore E(7) =25=1/v;, V(r)=0.1
Literature on HB framework for FH models (see You &
Chapman, 2006 ; Poletini, 2017)

Not tested in this presentation



Case study - Non-SAE literature - Possible pitfalls

INLA 1 is assumed by the paper

One observation per Upazila
Why expect the model to be identifiable 7

INLA 2 introduces a heteroscedastic structure

* However, o2 unknown — identifiability?

2
e

INLA 3 uses a highly informative prior on o



Case study - Results fixed effects

® Same spec as is the non-SAE paper

® Small differences in the estimates of the fixed effects
e FH & INLA 3 almost identical

Variable Fay-Herriot INLA 1 INLA 2 INLA 3
Estimate S.E. | Estimate S.E. | Estimate S.E. | Estimate S.E.
(Intercept) 0.922  0.139 0.941 0.148 | 0.861 0.135 0.921 0.138
evi 0.000  0.000 0.000  0.000 | 0.000 0.000 | 0.000 0.000
elev -0.152  0.030 | -0.142 0.032 | -0.166 0.028 | -0.152 0.030
nl 0.385  0.030 0.372 0.031 0.409 0.030 | 0.386 0.030
acc -0.084 0.034 | -0.090 0.036 | -0.068 0.033 | -0.084 0.034




Case study - Results variance components

Large differences in the estimated variance components

Var.comp‘Fay—Herriot INLA1 INLA2 INLA3
52 0.0391 0.0865 0.1121  0.0401

e

52 0.1091 0.0759 0.0423 0.1059

u

FH & INLA 3 almost identical

INLA 1 & 2 differ

Sensitivity analyses, change the starting values of o2
Other starting values set to default INLA ones

2 ok 0 ols 00 b is 020
inital value Uinital value Vinital value



INLA 1

Case study - Impact on SAE point estimation

INLA heteroscedastic inf.prior

2
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Fay-Herriot
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® INLA_noident(1/3) ® INLA_noident(1/4) ® INLA_noident(1/5) Fay—Herriot
-ay—-Herriof

® Positive correlation with FH estimates for INLA 1

® Observe correlation of FH estimates with INLA 3 (highly
informative prior)
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Case study - Impact on MSE estimation
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® (Clear impact on MSE estimates
® QObserve distribution of FH analytic MSE estimates with INLA
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Concluding remarks

New forms of data offer significant potential for SAE

® Dynamic updating of estimates
® Possibly reduced costs
® Flexible definition of geography

Risks from black box use of powerful algorithmic tools
® |ack of sensitivity analyses — misleading results
® Tempting to produce estimates at very low geographies

Next steps

® Work with CDR data
® Challenges with the definition of geography

¢ Consider other models as alternatives to FH (see Poletini,
2017)



Thank you for your attention.
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