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Simple cluster sample vector estimator
Basic notation

U is population of size N,
m is number of variables observed inU,
yk = [yk ,1...yk ,m] where k ∈ U,
D = {U1, ...,Uh, ...,UG} is partition of U into clusters Uh,
h = 1, ..,G, N̄ = N/G,

ȳ = [ȳ1...ȳm] =
∑
k∈U

yk/N, yU = Nȳ =
∑
k∈U

yk = [yU,1...yU,m],

yU,i =
∑
k∈U

yk ,i , C = [ci,j ], ci,j =
∑
k∈U

(yk ,i−ȳi)(yk ,j−ȳj)/(N−1),

R = D−1/2CD−1/2 = [ri,j ], D = [vi ], ri,j =
ci,j√vivj

, vi = ci,i .



Simple cluster sample vector estimator
Basic notation

ȳUh =
∑
k∈Uh

yk/Nh, ȳUh = [ȳUh,1...ȳUh,m], ȳUh,i =
∑
k∈Uh

yk ,i/Nh,

yUh = NhȳUh =
∑
k∈Uh

yk , yUh = [yUh,1...yUh,m], yUh,i =
∑
k∈Uh

yk ,i ,

CUh = [cUh,i,j ], cUh,i,j =
∑
k∈Uh

(yk ,i − ȳUh,i)(yk ,j − ȳUh,j)/(Nh − 1),

ȳD =
G∑

h=1

yUh/G = yU/G = [ȳD,1...ȳD,m], ȳD,i =
G∑

h=1

yUh,i/G = yU,i/G,

yD = GȳD =
G∑

h=1

= yUh = yU , CD = [cD,i,j ],

cD,i,j =
G∑

h=1

(yUh,i − ȳD,i)(yUh,j − ȳD, j)/(G − 1), i , j = 1, ...,m.



Simple cluster sample vector estimator
Properties of the stimator

ỹS =
G
g

∑
h∈s

∑
k∈Uh

yk =
G
g

∑
h∈s

yUh , V (ỹS) =
G(G − g)

g
CD, (1)

V (ỹS) =
G(G − g)

g
N̄C

(
Im +

N −G
G − 1

∆

)
+

G(G − g)

g
A (2)

homogeneity matrix: ∆ = Im − C−1C∗, (3)

A = [ai,j ]; ai,j =
1

G − 1

G∑
h=1

(Nh − N̄)NhȳUh,i ȳUh,j , (4)

C∗ = [c∗i,j ], c∗i,j =
1

N −G

G∑
h=1

∑
k∈Uh

(yk ,i−ȳUh,i)(yk ,j−ȳUh,j), (5)

The eigenvalues of ∆ and the diagonal elements of ∆ take
values from

[
− G−1

N−G ; 1
]
.



Simple cluster sample vector estimator
Relative efficiency

The relative efficiency coefficient (Rao and Scott (1981):

deff (ỹS) = λ
(

V (yS)−1V (ỹS)
)
∝ λ

(
C−1CD

)
. (6)

where λ(...) is maximal eigenvalue and ordinary estimator

yS =
N
n

∑
k∈S

yk , V (yS) =
N(N − n)

n
C (7)

Estimator ỹS is not worst than yS if and only if V (ỹS)− V (yS) is
non-positive definite and all eigenvalues of V (yS)−1V (ỹS) take
values from [0; 1].

deff (ỹS) = 1 + λ

(
N −G
G − 1

∆ +
1
N̄

C−1A
)
. (8)

If Nh = const for all h = 1, ...,G:

0 ≤ deff (ỹS) = 1 +
N −G
G − 1

λ(∆) ≤ N − 1
G − 1

. (9)



Clustering algorithms
Systematic algorithm D1

Let yk > 0 for all k = 1, ...,N,
evaluation of squared distances dk = ykyT

k of yk from the
zero vector 0 for all k ∈ U,
let us assume that dk ≤ dk+1 for k = 1, ...,N − 1,
h-th cluster is identified by such k ∈ Uh that
k = (i − 1)G + h, for i = 1, ...,M and h = 1, ...,G,
this leads to: dUh ≤ dUh+1 for h = 1, ...,G − 1 where
dUh =

∑
k∈Uh

dk .



Clustering algorithms
Systematic algorithm D2

Let dk = (yk − ȳ)(yk − ȳ)T be the squared distance of yk
from vector ȳ for all k ∈ U,

let dk ≤ dk+1 for k = 1, ...,N − 1.

when M is even and N = MG, then

Uh = {(h − 1)
M
2

+ i ; N − (h − 1)
M
2
− i + 1}

for h = 1, ...,G and i = 1, ...M/2.

Particularly, if M = 2 and N = MG,

Uh = {h; N − h + 1}

for h = 1, ...,G.



Clustering algorithms
Permutation algorithm D3

Let D(0) = {U(0)
1 , ...,U(0)

G } be any start partition of
population into clusters of the same sizes,

in the t-h (t=0,1,...) iteration partition D(t) = {U(t)
1 , ...,U(t)

G }
is generated through permutation population elements of
U,
for assumed t = T , D3 is treated as optimal when

D3 = arg(min{t=1,..,T}(λ(∆(D(t))))). (10)



Clustering algorithms
Algorithm D4

Let D(0) = {U(0)
1 , ...,U(0)

G } be any start partition of the
population into clusters of not necessary of the same size,
let f : U → D(t), ft (k) = h, if and only if k ∈ U(t)

h .
in iteration t + 1 we randomly choice number k∗ from
1, ...,N,
element k∗ is moved from the cluster h# = ft (k∗) to cluster
h∗. h∗ is randomly drawn from {h : h = 1, ...,G; h 6= h#}.
This leads to new partition D(t+1),
let λt+1 = λ(CD(t+1)). If λt+1 < λt , then D(t+1) is the current
partition and we start the iteration t + 2 of the algorithm,
if λt+1 ≥ λt , then we start the stage t + 2 of the algorithm
from partition D(t);
the algorithm is stopped when number of the iteration
reach assumed level T ;
this algorithm minimizes deff (ỹS).



Clustering algorithms
Algorithm D5

D(t) = {U(t)
1 , ...,U(t)

G } is the resulted of t-th iteration where
t = (l − 1)N + k , k = 1, ...,N, l = 1,2, ...;

let λt = λ(CD(t)) and let f : U → D(t), ft (l) = h⇔ l ∈ U(t)
h ;

in stage t + 1 element k ∈ U(t)
h , where h = ft (k), is moved

to clusters U(t)
z , z 6= h, z = 1, ...,G and calculated the

following

(k , z) = arg
(
min{z=1,...,G,z 6=ft (k)} (λ(CD(t)(k , z)))

)
(11)

λ(CD(t)(k , z)) is evaluated for the partition D(t) in which
clusters U(t)

z and U(t)
h are replaced by {U(t)

z ∪ {k}} and
{U(t)

h − {k}}, respectively, and h = ft (k);



Clustering algorithms
Algorithm D5, continuation

If λ(CD(t)(z)) < λt , then λt+1 = λ(CD(t+1)) and D(t+1) is
equal to D(t) where clusters U(t)

z and U(t)
h are replaced by

U(t+1)
z = {U(t)

z ∪ {k}} and U(t+1)
h = {U(t)

h − {k}},
respectively;
if λ(CD(t)(z)) ≥ λt , then D(t+1) = D(t) and λt+1 = λt ;
the iteration process is stopped when λt+N = λt or the
number of the iterations attains the preassigned level T .



Clustering algorithms
Algorithm D6

in iteration t + 1 element k ∈ U(t)
h , where h = ft (k), is

moved to clusters U(t)
z , z 6= h, z = 1, ...,G and calculated:

(k , z) = arg
(
min{k∈U}min{z 6=ft (k),z=1,...,G} (λ(CD(t)(k , z)))

)
(12)

λ(CD(t)(k , z)) is evaluated for D(t) in which clusters U(t)
z

and U(t)
h are replaced by {U(t)

z ∪ {k}} and {U(t)
h − {k}},

respectively, and h = ft (k);
if λ(CD(t)(k , z)) < λt , then λ(CD(t+1)) = λ(CD(t)(k , z)) and
D(t+1) is equal to D(t) where U(t)

z and U(t)
h are replaced by

U(t+1)
z = {U(t)

z ∪ {k}} and U(t+1)
h = {U(t)

h − {k}},
respectively;
the process is stopped when λ(CD(t)(k , z)) ≥ λt .



Accuracy analysis

Data on Swedish municipalities from Särndal C.E., et al.
Variables y1 and y2 are the real estate values and number of
municipal employees, respectively.
Table 1. Relative efficiencies.
n (M,g) D1 D2 D3 D4 D5 D6
1 2 3 5 6 7 8 9
16 (2,8) 0.99 1.11 0.82 0.56 0.64 0.77
16 (4,4) 1.10 2.15 0.75 0.18 0.44 0.58
16 (8,2) 1.17 4.25 0.62 0.05 0.18 0.44
28 (2,14) 0.99 1.11 0.82 0.56 0.64 0.77
28 (4,7) 1.10 2.15 0.75 0.18 0.44 0.58
28 (14,2) 1.31 7.35 0.50 0.02 0.04 0.20
48 (2,24) 0.99 1.11 0.82 0.56 0.64 0.77
48 (4,12) 1.10 2.15 0.75 0.18 0.44 0.58
48 (8,6) 1.17 4.25 0.62 0.05 0.18 0.44

Source: Own calculations.



Conclusions

Only under D1 and D2 the accuracy of yS is not less than
the accuracy ỹS for all (M,g).
D4 leads to the most efficient estimation based on ỹS.
D3 leads to the most efficient estimation based on ỹS,
when we assume that the population is split into clusters of
the same sizes.
For D1 and D2 the efficiency of ỹS decreases, when
number of clusters g decreases under fixed n.
For D3-D6 the efficiency of ỹS increases, when number of
clusters g decreases under fixed n.
For instance, under D4, when (M,g) = (2,14) and
(M,g) = (14,2), deff (ỹS) = 0.56 and deff (ỹS) = 0.02,
respectively.
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