On influence of clustering population on estimation accuracy of population totals vector

Janusz L. Wywiał, Grzegorz Sitek

Department of Statistics, Econometrics and Mathematics University of Economics in Katowice, Poland, janusz.wywial@ue.katowice.pl, grzegorz.sitek@ue.katowice.pl

ITACOSM 2019, 05-07 June 2019

- 1. Simple cluster sample vector estimator.
- 2. Relative efficiency.
- 3. Clustering algorithms.
- 4. Accuracy analysis.
- 5. Conclusion.
- 6. References.

Simple cluster sample vector estimator Basic notation

- *U* is population of size *N*,
- *m* is number of variables observed in *U*,

•
$$\mathbf{y}_{k} = [\mathbf{y}_{k,1}...\mathbf{y}_{k,m}]$$
 where $k \in U$,
• $\mathcal{D} = \{U_{1}, ..., U_{h}, ..., U_{G}\}$ is partition of U into clusters U_{h} ,
 $h = 1, ..., G, \ \bar{N} = N/G$,
 $\bar{\mathbf{y}} = [\bar{\mathbf{y}}_{1}...\bar{\mathbf{y}}_{m}] = \sum_{k \in U} \mathbf{y}_{k}/N, \quad \mathbf{y}_{U} = N\bar{\mathbf{y}} = \sum_{k \in U} \mathbf{y}_{k} = [\mathbf{y}_{U,1}...\mathbf{y}_{U,m}],$
 $\mathbf{y}_{U,i} = \sum_{k \in U} \mathbf{y}_{k,i}, \quad \mathbf{C} = [\mathbf{c}_{i,j}], \quad \mathbf{c}_{i,j} = \sum_{k \in U} (\mathbf{y}_{k,i} - \bar{\mathbf{y}}_{i})(\mathbf{y}_{k,j} - \bar{\mathbf{y}}_{j})/(N-1),$

$$\mathbf{R} = \mathbf{D}^{-1/2} \mathbf{C} \mathbf{D}^{-1/2} = [r_{i,j}], \quad \mathbf{D} = [v_i], \quad r_{i,j} = \frac{c_{i,j}}{\sqrt{v_i v_j}}, \quad v_i = c_{i,i}.$$

Simple cluster sample vector estimator Basic notation

$$\begin{split} \bar{\mathbf{y}}_{U_h} &= \sum_{k \in U_h} \mathbf{y}_k / N_h, \quad \bar{\mathbf{y}}_{U_h} = [\bar{\mathbf{y}}_{U_h,1} \dots \bar{\mathbf{y}}_{U_h,m}], \quad \bar{\mathbf{y}}_{U_h,i} = \sum_{k \in U_h} \mathbf{y}_{k,i} / N_h, \\ \mathbf{y}_{U_h} &= N_h \bar{\mathbf{y}}_{U_h} = \sum_{k \in U_h} \mathbf{y}_k, \quad \mathbf{y}_{U_h} = [\mathbf{y}_{U_h,1} \dots \mathbf{y}_{U_h,m}], \quad \mathbf{y}_{U_h,i} = \sum_{k \in U_h} \mathbf{y}_{k,i}, \\ \mathbf{c}_{U_h} &= [\mathbf{c}_{U_h,i,j}], \quad \mathbf{c}_{U_h,i,j} = \sum_{k \in U_h} (\mathbf{y}_{k,i} - \bar{\mathbf{y}}_{U_h,i}) (\mathbf{y}_{k,j} - \bar{\mathbf{y}}_{U_h,j}) / (N_h - 1), \end{split}$$

$$\bar{\mathbf{y}}_{\mathcal{D}} = \sum_{h=1}^{G} \mathbf{y}_{U_h} / G = \mathbf{y}_{U} / G = [\bar{\mathbf{y}}_{\mathcal{D},1} ... \bar{\mathbf{y}}_{\mathcal{D},m}], \quad \bar{\mathbf{y}}_{\mathcal{D},i} = \sum_{h=1}^{G} \mathbf{y}_{U_h,i} / G = \mathbf{y}_{U,i} / G,$$

$$oldsymbol{y}_{\mathcal{D}} = Goldsymbol{ar{y}}_{\mathcal{D}} = \sum_{h=1}^G = oldsymbol{y}_{U_h} = oldsymbol{y}_U, \quad oldsymbol{\mathcal{C}}_{\mathcal{D}} = [oldsymbol{c}_{\mathcal{D},i,j}],$$

 $c_{\mathcal{D},i,j} = \sum_{i=1}^{G} (y_{U_{h},i} - \bar{y}_{\mathcal{D},i})(y_{U_{h},j} - \bar{y}_{\mathcal{D},j})/(G-1), \quad i,j = 1, ..., m.$

Simple cluster sample vector estimator

Properties of the stimator

$$\begin{split} \tilde{\pmb{y}}_{S} &= \frac{G}{g} \sum_{h \in s} \sum_{k \in U_{h}} \pmb{y}_{k} = \frac{G}{g} \sum_{h \in s} \pmb{y}_{U_{h}}, \quad \pmb{V}(\tilde{\pmb{y}}_{S}) = \frac{G(G-g)}{g} \pmb{C}_{D}, \quad (1) \\ \pmb{V}(\tilde{\pmb{y}}_{S}) &= \frac{G(G-g)}{g} \bar{N} \pmb{C} \left(\pmb{I}_{m} + \frac{N-G}{G-1} \Delta \right) + \frac{G(G-g)}{g} \pmb{A} \quad (2) \\ \text{homogeneity matrix:} \quad \Delta &= \pmb{I}_{m} - \pmb{C}^{-1} \pmb{C}_{*}, \quad (3) \\ \pmb{A} &= [a_{i,j}]; \quad a_{i,j} = \frac{1}{G-1} \sum_{h=1}^{G} (N_{h} - \bar{N}) N_{h} \bar{y}_{U_{h},i} \bar{y}_{U_{h},j}, \quad (4) \\ \pmb{C}_{*} &= [c_{*i,j}], \quad c_{*i,j} = \frac{1}{N-G} \sum_{h=1}^{G} \sum_{k \in U_{h}} (y_{k,i} - \bar{y}_{U_{h},i}) (y_{k,j} - \bar{y}_{U_{h},j}), \quad (5) \end{split}$$

The eigenvalues of Δ and the diagonal elements of Δ take values from $\left[-\frac{G-1}{N-G}; 1\right]$.

Simple cluster sample vector estimator Relative efficiency

The relative efficiency coefficient (Rao and Scott (1981):

$$deff(\tilde{\boldsymbol{y}}_{\mathcal{S}}) = \lambda \left(\boldsymbol{V}(\boldsymbol{y}_{\mathcal{S}})^{-1} \boldsymbol{V}(\tilde{\boldsymbol{y}}_{\mathcal{S}}) \right) \propto \lambda \left(\boldsymbol{C}^{-1} \boldsymbol{C}_{\mathcal{D}} \right).$$
(6)

where $\lambda(...)$ is maximal eigenvalue and ordinary estimator

$$\boldsymbol{y}_{S} = \frac{N}{n} \sum_{k \in S} \boldsymbol{y}_{k}, \qquad \boldsymbol{V}(\boldsymbol{y}_{S}) = \frac{N(N-n)}{n} \boldsymbol{C}$$
 (7)

Estimator \tilde{y}_S is not worst than y_S if and only if $V(\tilde{y}_S) - V(y_S)$ is non-positive definite and all eigenvalues of $V(y_S)^{-1}V(\tilde{y}_S)$ take values from [0; 1].

$$deff(\tilde{\boldsymbol{y}}_{S}) = 1 + \lambda \left(\frac{N-G}{G-1} \boldsymbol{\Delta} + \frac{1}{\bar{N}} \boldsymbol{C}^{-1} \boldsymbol{A} \right).$$
(8)

If $N_h = const$ for all h = 1, ..., G:

$$0 \leq deff(\tilde{\boldsymbol{y}}_{\mathcal{S}}) = 1 + \frac{N-G}{G-1}\lambda(\boldsymbol{\Delta}) \leq \frac{N-1}{G-1}.$$
 (9)

- Let $y_k > 0$ for all k = 1, ..., N,
- evaluation of squared distances d_k = y_ky_k^T of y_k from the zero vector 0 for all k ∈ U,
- let us assume that $d_k \leq d_{k+1}$ for k = 1, ..., N 1,
- *h*-th cluster is identified by such $k \in U_h$ that k = (i 1)G + h, for i = 1, ..., M and h = 1, ..., G,
- this leads to: $d_{U_h} \le d_{U_{h+1}}$ for h = 1, ..., G 1 where $d_{U_h} = \sum_{k \in U_h} d_k$.

Systematic algorithm \mathcal{D}_2

- Let $d_k = (\mathbf{y}_k \bar{\mathbf{y}})(\mathbf{y}_k \bar{\mathbf{y}})^T$ be the squared distance of \mathbf{y}_k from vector $\bar{\mathbf{y}}$ for all $k \in U$,
- let $d_k \le d_{k+1}$ for k = 1, ..., N 1.
- when M is even and N = MG, then

$$U_h = \{(h-1)\frac{M}{2} + i; N - (h-1)\frac{M}{2} - i + 1\}$$

for h = 1, ..., G and i = 1, ...M/2.

• Particularly, if M = 2 and N = MG,

$$U_h = \{h; N - h + 1\}$$

for *h* = 1, ..., *G*.

Clustering algorithms Permutation algorithm \mathcal{D}_3

- Let $\mathcal{D}^{(0)} = \{U_1^{(0)}, ..., U_G^{(0)}\}$ be any start partition of population into clusters of the same sizes,
- in the *t*-h (t=0,1,...) iteration partition $\mathcal{D}^{(t)} = \{U_1^{(t)}, ..., U_G^{(t)}\}$ is generated through permutation population elements of U,
- for assumed t = T, D_3 is treated as optimal when

$$\mathcal{D}_3 = \arg(\min_{\{t=1,\dots,T\}}(\lambda(\boldsymbol{\Delta}(\mathcal{D}^{(t)})))).$$
(10)

Algorithm \mathcal{D}_4

- Let $\mathcal{D}^{(0)} = \{U_1^{(0)}, ..., U_G^{(0)}\}$ be any start partition of the population into clusters of not necessary of the same size,
- let $f: U \to \mathcal{D}^{(t)}$, $f_t(k) = h$, if and only if $k \in U_h^{(t)}$.
- in iteration t + 1 we randomly choice number k_{*} from 1, ..., N,
- element k_* is moved from the cluster $h_{\#} = f_t(k_*)$ to cluster h_* . h_* is randomly drawn from $\{h : h = 1, ..., G; h \neq h_{\#}\}$. This leads to new partition $\mathcal{D}^{(t+1)}$,
- let $\lambda_{t+1} = \lambda(\mathbf{C}_{\mathcal{D}^{(t+1)}})$. If $\lambda_{t+1} < \lambda_t$, then $\mathcal{D}^{(t+1)}$ is the current partition and we start the iteration t + 2 of the algorithm,
- if $\lambda_{t+1} \ge \lambda_t$, then we start the stage t + 2 of the algorithm from partition $\mathcal{D}^{(t)}$;
- the algorithm is stopped when number of the iteration reach assumed level *T*;
- this algorithm minimizes $deff(\tilde{y}_S)$.

Algorithm \mathcal{D}_5

- $\mathcal{D}^{(t)} = \{U_1^{(t)}, ..., U_G^{(t)}\}$ is the resulted of *t*-th iteration where t = (l-1)N + k, k = 1, ..., N, l = 1, 2, ...;
- let $\lambda_t = \lambda(\boldsymbol{C}_{\mathcal{D}^{(t)}})$ and let $f : \boldsymbol{U} \to \mathcal{D}^{(t)}, f_t(l) = h \Leftrightarrow l \in U_h^{(t)};$
- in stage t + 1 element $k \in U_h^{(t)}$, where $h = f_t(k)$, is moved to clusters $U_z^{(t)}$, $z \neq h$, z = 1, ..., G and calculated the following

$$(k,\underline{z}) = \arg\left(\min_{\{z=1,\dots,G, z\neq f_t(k)\}} \left(\lambda(\boldsymbol{C}_{\mathcal{D}^{(t)}}(k,z))\right)\right) \quad (11)$$

λ(C_{D(t)}(k, z)) is evaluated for the partition D^(t) in which clusters U^(t)_z and U^(t)_h are replaced by {U^(t)_z ∪ {k}} and {U^(t)_h - {k}}, respectively, and h = f_t(k);

- If $\lambda(\boldsymbol{C}_{\mathcal{D}^{(t)}}(\underline{z})) < \lambda_t$, then $\lambda_{t+1} = \lambda(\boldsymbol{C}_{\mathcal{D}^{(t+1)}})$ and $\mathcal{D}^{(t+1)}$ is equal to $\mathcal{D}^{(t)}$ where clusters $U_{\underline{z}}^{(t)}$ and $U_{\underline{h}}^{(t)}$ are replaced by $U_{\underline{z}}^{(t+1)} = \{U_{\underline{z}}^{(t)} \cup \{k\}\}$ and $U_{h}^{(t+1)} = \{U_{h}^{(t)} \{k\}\}$, respectively;
- if $\lambda(\mathbf{C}_{\mathcal{D}^{(t)}}(\underline{z})) \geq \lambda_t$, then $\mathcal{D}^{(t+1)} = \mathcal{D}^{(t)}$ and $\lambda_{t+1} = \lambda_t$;
- the iteration process is stopped when λ_{t+N} = λ_t or the number of the iterations attains the preassigned level *T*.

Algorithm \mathcal{D}_6

in iteration t + 1 element k ∈ U_h^(t), where h = f_t(k), is moved to clusters U_z^(t), z ≠ h, z = 1, ..., G and calculated:

$$(\underline{k},\underline{z}) = \arg\left(\min_{\{k \in U\}} \min_{\{z \neq f_t(k), z=1,\dots,G\}} \left(\lambda(\boldsymbol{C}_{\mathcal{D}^{(t)}}(k, z))\right)\right)$$
(12)

- $\lambda(\mathbf{C}_{\mathcal{D}^{(t)}}(k, z))$ is evaluated for $\mathcal{D}^{(t)}$ in which clusters $U_z^{(t)}$ and $U_h^{(t)}$ are replaced by $\{U_z^{(t)} \cup \{k\}\}$ and $\{U_h^{(t)} - \{k\}\}$, respectively, and $h = f_t(k)$;
- if $\lambda(\boldsymbol{C}_{\mathcal{D}^{(t)}}(\underline{k},\underline{z})) < \lambda_t$, then $\lambda(\boldsymbol{C}_{\mathcal{D}^{(t+1)}}) = \lambda(\boldsymbol{C}_{\mathcal{D}^{(t)}}(\underline{k},\underline{z}))$ and $\mathcal{D}^{(t+1)}$ is equal to $\mathcal{D}^{(t)}$ where $U_z^{(t)}$ and $U_h^{(t)}$ are replaced by $U_{\underline{z}}^{(t+1)} = \{U_{\underline{z}}^{(t)} \cup \{k\}\}$ and $U_h^{(t+1)} = \{U_h^{(t)} \{k\}\}$, respectively;
- the process is stopped when $\lambda(\mathbf{C}_{\mathcal{D}^{(t)}}(\underline{k}, \underline{z})) \geq \lambda_t$.

Data on Swedish municipalities from Särndal C.E., et al. Variables y_1 and y_2 are the real estate values and number of municipal employees, respectively.

n	(M,g)	\mathcal{D}_1	\mathcal{D}_2	\mathcal{D}_3	\mathcal{D}_4	\mathcal{D}_5	\mathcal{D}_{6}
1	2	3	5	6	7	8	9
16	(2,8)	0.99	1.11	0.82	0.56	0.64	0.77
16	(4,4)	1.10	2.15	0.75	0.18	0.44	0.58
16	(8,2)	1.17	4.25	0.62	0.05	0.18	0.44
28	(2,14)	0.99	1.11	0.82	0.56	0.64	0.77
28	(4,7)	1.10	2.15	0.75	0.18	0.44	0.58
28	(14,2)	1.31	7.35	0.50	0.02	0.04	0.20
48	(2,24)	0.99	1.11	0.82	0.56	0.64	0.77
48	(4,12)	1.10	2.15	0.75	0.18	0.44	0.58
48	(8,6)	1.17	4.25	0.62	0.05	0.18	0.44

Table 1. Relative efficiencies.

Source: Own calculations.

Conclusions

- Only under D₁ and D₂ the accuracy of y_S is not less than the accuracy ỹ_S for all (M, g).
- \mathcal{D}_4 leads to the most efficient estimation based on \tilde{y}_S .
- \mathcal{D}_3 leads to the most efficient estimation based on \tilde{y}_S , when we assume that the population is split into clusters of the same sizes.
- For \mathcal{D}_1 and \mathcal{D}_2 the efficiency of \tilde{y}_S decreases, when number of clusters *g* decreases under fixed *n*.
- For D₃-D₆ the efficiency of *ỹ_S* increases, when number of clusters *g* decreases under fixed *n*.
- For instance, under \mathcal{D}_4 , when (M, g) = (2, 14) and (M, g) = (14, 2), $deff(\tilde{y}_S) = 0.56$ and $deff(\tilde{y}_S) = 0.02$, respectively.

Reference

- Borovkov A.A. (1981). Mathematical Statistics. Estimation. Testing Hypotheses. (in Russian) Nauka Moskva.
- Rao, C.R. (1973). Linear Statistical Inference and Its Applications. John Wiley & Sons, Inc. New York.
- Rao, J.N.K., Scott A.J. (1981). The analysis of categorical data from complex sample surveys: Chi-squared tests of goodness of fit and independence in two-way tables. *Journal of the American Statistical Association* vol. 76, no. 374, pp. 221-230.
- Särndal C.E., Swensson B., Wretman J. (1992). *Model Assisted Survey Sampling* Springer-Verlag, New York.
- Wywiał J.L. (2003). Some Contributions to Multivariate Methods in Survey Sampling. University of Economics in Katowice. http://www.ue.katowice.pl/fileadmin/user _upload/wydawnictwo/Darmowe_E – Booki

Thank you very much