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Introduction

• Main purpose of the Dutch Travel Survey (DTS) is to
produce reliable estimates on mobility of the Dutch
population.

• Here three mobility characteristics per person per day
(pppd) are considered

• Average number of journey legs pppd (anjl-pppd)
• Average distance per journey leg (adjl)
• Average distance pppd (ad-pppd) based on anjl-pppd and

adjl

• Journey legs are characterized by journey motive and
transportation modes for a particular journey.
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Journey legs by motive and transportation modes

Motive: Child’s Education
Mode: Walk , Bus, Walk
Number of Trips: 3

Motive: Parent’s Job
Mode: Walk, Train, Walk

Number of Trips: 3

Motive and Mode of Journey
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Aims of the study

• At first, trends of mobility indicators for the period
1999-2017 are aimed to estimate for small domains

• D = 504 small domains are cross-classification of:
• sex (male, female)
• ageclass (0-5, 6-11, 12-17, 18-29, 30-39, 40-49, 50-59, 60-69, 70+)
• motive (work, shopping, education, other)
• mode (car driver, car passenger, train, BTM (bus/tram/metro), cycling,

walking, other)

• Finally, predictions of trends for higher aggregation levels
by aggregation of most detailed level predictions

• Aggregation Level (say): Overall, Motive, Mode, Motive X Mode
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Predictions of Mobility Trends

• Time series multilevel models (TSMMs) are defined at the
most detailed level (i.e., sex-ageclass-motive-mode)

• TSMMs for small area prediction are extensions of the
area level Fay-Herriot (1979) model.

• Direct estimates of anjl-pppd and adjl and their estimated
standard errors (SE) are utilized as input

• TSMMs are expressed in a hierarchical Bayesian
framework and fit using a MCMC simulation method.
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Problems in Predictions of Mobility Trends

• Discontinuities due to the redesigns of DTS in 2004 (from
OVG to MON), and 2010 (from MON to OViN)

• These discontinuities are more visible at aggregate level
and need to be accounted in modeling

• Small sample size to obtain reliable point estimates and
stable SEs for many domains

• Outliers due to less reliable point estimates in 2009
• Many domains (without structurally zero domains) with

zero direct estimates due to no observations of trip legs.
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Some Notations

• Ŷit = Direct estimate for year t and domain i
• se(Ŷit ) = Estimated standard error of Ŷit

• Generalized Variance Function (GVF) model is developed
for getting smoothed se(Ŷit )

• θ̂it = Trend estimates resulting from developed TSMMs
• se(θ̂it ) = Estimated SE of θ̂it resulting from the TSMMs
• θ̂it and se(θ̂it ) are MCMC approximations of the posterior

mean and standard deviation

7/38



Introduction Methods Model Development Results Conclusions Reference Appendix

Multilevel time series model

The initial estimates Ŷit are combined into a M-vector as

Ŷ = (Ŷ11, . . . ŶMd 1, . . . Ŷ1T , . . . ŶMd T )

where Md = 504, T = 19 and M = Md × T . The multilevel
models take the general linear additive form

Ŷ = Xβ +
∑
α

Z (α)v (α) + e

• X = M × p design matrix for a p-vector of fixed effects β
• Z (α)= M × q(α) design matrices for q(α)-dimensional

random effect vectors v (α)

• Sampling errors e = (e11, . . . ,eMd 1, . . .eMd T ) ∼ N (0,Σ)

where Σ = Φ = ⊕T
t=1Φt with Φt= COV (Ŷ1t , . . . , ŶMd t ).

Here, Φt is assumed diagonal.
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Multilevel time series model

• v (α) for different α are assumed to be independent
• However, components of a vector v (α) can be correlated to

accommodate temporal / cross-sectional correlation.
• For convenience, the superscript α is suppressed later.
• Each vector v is assumed to be distributed as

v ∼ N (0,A⊗ V ) ,

where V and A are d × d and l × l covariance matrices.
• Length of v is q = dl

• Simply d effects allowed to vary over l levels of a factor.
• e.g. motive (d = 4) varying over time (l = 19 years).
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Multilevel time series model

• Matrix V is allowed to be parameterized as
• fully parameterized (unstructured) covariance matrix,
• a diagonal matrix with different elements (diagonal)
• a diagonal matrix with equal elements (scalar).

• Modelling multiple varying effects: Choose an appropriate
covariance matrix V

• Generalisation of V to non-normal distributions of random
effects

• Student-t, Horseshoe prior, Laplace distributions
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Multilevel time series model

• Matrix A describes known covariance structure between
the levels of a factor variable.

• Precision matrixces QA = A−1 instead of A are used.
• Modelling variations over time: Choose a Matrix A with

appropriate correlation structure
• First-order random walk (RW1): Local level trends
• Second-order random walk (RW2): Smooth trends

• Generalisation of A to non-normal distributions can be
done as V
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Multilevel time series model

• Models are fitted using MCMC sampling (Gibbs sampler)
• Specification of the full conditional distributions are

available in Boonstra and Brakel (2018).
• Model selection procedure: Widely Applicable Information

Criterion (WAIC) and Deviance Information Criterion (DIC).
• The models are run in R using package mcmcsae.
• A longer run of 1000 burn-in plus 10000 iterations. Finally,

3 chains × 2000 iterations = 6000 draws to compute
estimates and standard errors.
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Model Development: Average number of journey legs
pppd (anjl-pppd)

• SQRT transformation of Ŷit and se(Ŷit )

• Taylor approximation of se(Ŷit )→ se(Ŷit )/(2
√

Ŷit )
• GVF model is applied to the transformed se(Ŷit )

• Covariates along with sex, ageclass, motive, mode
• br mon: takes values 1 for 2004-2009 years
• br ovin: takes values 1 for 2010-2017 years
• dummy 2009: Binary variable for year 2009
• yr.c: Scaled and centered version of year (yr)
• br mon SO: Equal to br mon for motives shopping & other
• snowdays: Annual number of snowdays

• Final time series model includes fixed and random effects
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Model Development: anjl-pppd

• Fixed effects components:
sex ∗ ageclass + motive ∗mode + (ageclass + motive +
mode) ∗ (br ovin + yr .c) + mode ∗ snowdays

• Random effects component:
Model
Component

Formula V
Variance
Structure

Factor A PriorA
Number
of Effects1

V 2009 dummy 2009 scalar
sex ∗ ageclass∗
motive ∗mode

Horseshoe 504

V BR
1 + yr .c +
br mon SO + br ovin

unstructured
sex ∗ ageclass∗
motive ∗mode

Laplace 1764

RW2AMM ageclass ∗motive ∗mode scalar RW2(yr) normal 4788
RW2MM motive ∗mode diagonal RW2(yr) normal 532

RW1SAM sex unstructured
ageclass ∗mode∗
RW1(yr)

normal 2394

WN 1 scalar
sex ∗ ageclass∗
motive ∗mode ∗ yr

normal 9576

• Normal distribution for the sampling errors works better

1This includes effects for structural zero domains.
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Model Development: Average distance per journey leg
(adjl)

• LOG transformation: Ŷit → log (Ŷit )

• Taylor approximation of se(Ŷit )→ se(Ŷit )/(Ŷit )

• GVF model is applied to the transformed se(Ŷit )

• Extra covariates
• log ratio km NAP: Logarithm of year-by-year differences

of Car Kilometers registered in National Autopas (NAP)
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Model Development: adjl

• Fixed effects component: sex + ageclass + motive ∗
mode + yr .c ∗mode + (mode walking + mode other) :
br ovin + mode cardriver : log ratio km NAP

• Random effects component:
Model
Component

Formula V Variance
Structure

Factor A PriorA
Number
of Effects

V BR
1 + yr .c +
br mon + br ovin

unstructured
sex ∗ ageclass∗
motive ∗mode

Laplace 2016

RW2M mode diagonal RW2(yr) normal 532

WN 1 scalar
sex ∗ ageclass∗
motive ∗mode ∗ yr

normal 9576

• Student-t distribution with df = 4 for the sampling errors
works better
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Results: Model Predictions and Trend Estimates

• Model predictions: Based on the linear predictor containing
all model components

η(r) = Xβ(r) +
∑
α

Z (α)v (α,r) ,

where superscript r indexes the retained MCMC draws.
• Trend estimates of main interest: The level break effects

and the dummy effects for outliers (if present) are removed
from η(r)
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Average number of journey legs pppd: Overall Level
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Figure: Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Average number of journey legs pppd: Motive Level
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Figure: Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Average distance per journey leg: Overall Level
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Figure: Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Average distance per journey leg: Motive Level
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Figure: Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Average distance pppd: Overall Level
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Figure: Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Average distance pppd: Motive Level
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Figure: Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Model Diagnostics

• Normality and heteroskedasticity assumptions are checked
at overall and detailed level.

• Autocorrelation of residuals is checked at detailed level.
• Posterior predictive check by calculating the posterior

predictice p-values (PPP) for various statistics including
weighted mean and variance.

• Model diagnostics confirm validity of the fitted multilevel
time-series models for anjl-pppd and adjl
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Concluding Remarks

• The developed time series models for anjl-pppd and adjl at
the most-detailed level provide consistent trend estimates
at different aggregation levels

• The models for anjl-pppd and adjl also provide consistent
trend estimates of ad-pppd.

• The final models cover the possible critical issues of
unstable SEs, effect of redesigns at several aggregation
levels, and outliers
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Concluding Remarks

• Outliers in the input estimates are accounted by
considering t-distribution for sampling errors.

• Global-local shrinkage allows for some large random
effects, while shrinking most (the noisy ones) to zero.

• Higher aggregation level variations are also accounted by
incorporating some contextual variables.

• The similar model development procedure can be easily
replicated to incorporate the new data of upcoming DTS
(ODIN), which are based on new sampling design.
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Thank you for your patience
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Appendix Table 1: Full covariance matrix for the
component “V BR”

• Est. standard deviations & correlations (×100): anjl-pppd

Intercept br mon SO br ovin yr.c
Intercept 14.76 (0.73) 3.97 (10.44) -49.97 (5.55) -7.52 (7.27)

br mon SO 1.74 (0.17) 24.88 (11.86) 28.37 (12.42)
br ovin 3.25 (0.22) -13.37 (8.40)

yr.c 1.38 (0.09)

• Est. standard deviations & correlations (×100): adjl

Intercept br mon br ovin yr.c
Intercept 26.5 (1.4) 3.0 (27.8) -19.6 (10.9) 17.7 (12.6)
br mon 1.4 (0.9) -2.6 (35.6) 17.1 (34.7)
br ovin 11.8 (1.5) 0.6 (21.2)

yr.c 3.8 (0.7)
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Appendix Table 2: Global and Local Scale Parameters
for “V 2009” and “V BR”

• σv2009=0.0036 with SE= 0.0009
• Summary statistics of the local scale parameters: anjl-pppd

Component Min Q0.25 Median Mean Q0.75 Max
V 2009 2.69 4.46 5.52 34.0 9.19 4710
V BR 0.44 0.65 0.84 0.91 1.05 2.16

• Summary statistics of the local scale parameters: adjl

Component Min Q0.25 Median Mean Q0.75 Max
V BR 0.52 0.77 0.94 0.96 1.08 2.24
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Appendix Figure 1: Residual diagnostics of the
standardized residuals for anjl-pppd
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Introduction Methods Model Development Results Conclusions Reference Appendix

Appendix Table 3: Normality, homoskedasticity and
serial correlations of domain-specific residuals

Proportion of domains for which the standardized residuals
satisfy the assumptions of normality, student-t (df=4.5),
homoskedasticity and serial correlations
• For anjl-pppd

Normal Homoskedasticity Serial Correlation Total Domain
Proportion 97.37 92.11 12.72 456

• For adjl
Normal Student-t Homoskedasticity Serial Correlation Total Domain

Proportion 89.32 99.55 88.41 9.09 440.00
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Introduction Methods Model Development Results Conclusions Reference Appendix

Appendix Figure 3: PPP for weighted mean and
variance for anjl-pppd

Histogram of PPP value: Weighted Mean

PPP value

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
40

80

Histogram of PPP value: Weighted Variance

PPP value

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

Figure: Distribution of PPP at detailed level

34/38



Introduction Methods Model Development Results Conclusions Reference Appendix

Appendix Figure 4: PPP for weighted mean and
variance for adjl
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Introduction Methods Model Development Results Conclusions Reference Appendix

Appendix Figure 5: Prediction at detailed level for
anjl-pppd
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Introduction Methods Model Development Results Conclusions Reference Appendix

Appendix Figure 6: Prediction at detailed level for adjl
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Introduction Methods Model Development Results Conclusions Reference Appendix

Appendix Figure 7: Prediction at detailed level for
ad-pppd
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