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Outline

 Generic data integration process to produce
– Integrated data sets
– Hybrid estimates

 An error framework for generic data sets
 An error framework for “hybrid” estimates
 Illustration from 2015 U.S. Residential Energy Consumption Survey

Presentation draws heavily from: 
Biemer, P. and Amaya, A. (in press). “Error frameworks for found data,” in Hill, Biemer, 
Buskirk, Japec, Kirchner, Kolenikov, and Lyberg (eds.) Big Data Meets Survey 
Science: A Collection of Innovative Methods, John Wiley & Sons, Hoboken, NJ.
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Definition: “data holdings
containing information which is 
not primarily collected for 
statistical purposes.” United 
Nations Economic Commission 
for Europe, 2011
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A Total Error Framework for a Generic Dataset

Total error = column error 
+ row  error
+ cell error
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Column and Cell Errors

Misspecified variables = specification error 
(misaligned construct, outdated value, etc.)

Variable values in error = content error
(measurement error, linking errors, data 
processing errors, etc.)

Variable values missing = missing data 
(nonresponse, unavailable, etc.)?
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Row errors

Records missing = undercoverage error; nonresponse
selection/sampling process

Nonpopulation records = overcoverage

Records duplicated = duplication error



Errors Associated with the Hybrid Estimation Process

Includes weighting and weight trimming, 
imputation, additional data editing, modeling 
adjustments and other error mitigation 
applications.
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Ŷ

X

Assume the error structure 
described in the previous 
slides.



Generalized TE Framework

Total Error = Sample Recruitment Error 
+ Data Encoding Error

Sample Recruitment Error is a generalization of the concept of 
representation error

Data Encoding Error is a generalization of the concept of 
measurement error
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Generalized TE Framework – Sample Recruitment Process
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Ri = 1 if a population unit 
makes it through all 4 gates; 
Ri = 0 otherwise



Generalized TE Framework – Data Encoding Process

Specification 
error

Data processing 
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Final data value, yi = xi + εi

1. Construct represented 
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3. Data processed without error?

2. Data encoded without error? Measurement 
error
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Total Error Identity for the Mean of the Encoded Data

Total Error = Data Enc Error + Samp Recr Error
            ( )            ( )n N n n n Ny X y x x X− = − + −
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Notation:
 is the true population mean

y  is the observed sample mean
 is the true sample mean
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Total Error Identity for the Mean of the Encoded Data

Total Error = Data Enc Error + Samp Recr Error
            ( )            ( )n N n n n Ny X y x x X− = − + −
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Total Error Identity for the Mean of the Encoded Data

Total Error = Data Enc Error + Samp Recr Error
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Data Encoding Error
 xi is the true characteristic for the ith sample unit
 yi is the encoded value of xi

 εi = yi - xi is the error in the encoded value for the ith 
sample unit
– Assume εi ~ i.i.d (Bε ,    )

2
2 2( | )E y x R B

n
ε

ε ε
σ

− = +

2
εσ

Data capture 
error bias

Data capture 
error variance
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R = {Ri, i=1,…,N}



Sample Recruitment Error Component 
 Xi denotes the characteristic measured for the ith person in the 

Recruitment Process
 , a measure of selection bias Corr( , | )RX i iR X Rρ =

2 2 2E ( ) ( )R n X R RX
N nx X E

n
σ ρ−

− =

Meng, 2017; 
Bethlehem, 1988

Population 
variance

Bias induced by the sample 
recruitment process
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Sample Recruitment Error Component
 xi denotes the true characteristic measured for the ith person in the 

Recruitment Process
 , a measure of selection bias Corr( , | )RX i iR x Rρ =

2 2 2E ( ) ( )R n X R RX
N nx X E

n
σ ρ−

− =

Example: For SRS sampling and no nonresponse, 2 1E ( )
1R RX N

ρ =
−

2
2 2E ( ) 1 X
X R RX

SN n n
n N n

σ ρ−  = − 
 
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Total Mean Squared Error of the Mean of a Generic Data Set

MSE( )  =ny
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Bias from
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Variance from
• Measurement error
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Variance & Bias
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Encoding error 
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interaction

Total Error = Data Enc Error + Samp Recr Error
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Interpretation of 

 Not much is known about ρRX for nonprobability samples.
 However, ρRX has been studied extensively for surveys (through the 

estimation of nonresponse bias). 
 ρRX will be smaller for nonprobability samples when gates 1, 2 and 3 

are entered for all members of the population. 
 Ability to adjust for sample recruitment bias is better for surveys 

because
– We have more control over who enters gates 1-3 and thus more control 

over ρRX

– We often know a lot about sample recruitment failures and how to adjust 
for them through weighting and imputation.

RXρ
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Alternative Form of the MSE
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Relative MSE is Often More Convenient to Work With

2
2 21

RelMSE( ) ( )E ( ) 2 E ( )yX
n R RX X R RX

y

CV N ny RB N n CV RB
n nε ε

τ
ρ ρ

τ
 − −

= + + − + 
  

BRB
X
ε

ε =2

MSE
X

X
XCV

X
σ

=
2

2 2  (reliability ratio)X
y

X ε

στ
σ σ

=
+

30



Alternative Form of the MSE
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Data Encoding Error
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Alternative Form of the MSE
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Illustration of Some Uses of these Results

Which is more accurate?
1. An estimate of the population average based upon an 

administrative data set with almost 100,000,000 records 
and over 80% coverage?  or

2. A national survey estimate based upon probability 
sample of 6000 respondents with a 55% response rate?
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We try to answer this question for the US Residential Energy 
Consumption Survey (RECS)
 Survey Data: 2015 RECS

– Mode changed from face to face to web/mail
– Respondent reports of housing unit square footage not reliable
– Substituting administrative data could be more accurate
– n ≈ 6,000 completed cases
– response rate ≈ 55%

 Administrative data: Zillow real estate data base
– Coverage ≈ 82%
– n ≈ 100,000,000 records
– Other data bases were also considered (Acxiom and CoreLogic)
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We try to answer this question for the US Residential Energy 
Consumption Survey (RECS)
 HU square footage is primarily used for micro-econometric 

modeling
 We will consider estimation of the U.S. average HU square 

footage to demonstrate the MSE analysis
 Similar analysis could be considered for other parameters of 

interest (i.e., regression coefficients)
 However, the current formulation would not be appropriate.
 Our analysis will use results from Amaya (2017)
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Input Parameters for Computing MSE
MSE 

Component RECS Zillow

Relative Bias -0.082 -0.14
Pop’n CV 0.64 0.64
Reliability 0.59 0.66

-0.000295 [-0.27,0.22]
N 118,208,250 118,208,250
n 6,000 96,930,765

Response rate 55.4%
82%Coverage rate ≈ 99%

Selection rate 0.009%

RXρ
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RelMSE
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Results Summary

 Whether MSEZillow < MSERECS depends on value of ρRX

 In this case, reducing ρRX may lead to larger MSE because two 
biases are offsetting one another

 Ideally, both biases should be minimized because an offsetting 
biases situation is not sustainable
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Potential Zillow Error Mitigation Strategies 
Data Encoding Error
 Estimate the bias and adjust for it
 May need ground truth square footage data to model this bias
 Weighting is not an effective strategy for mitigating this error risk

Sample Recruitment Error
 Weight the Zillow data to reduce |ρRX|
 Weights will approximate [E(Ri)]-1

 Modeling E(Ri|X) will require understanding how Ri varies by housing 
unit and other characteristics (X) of the sample recruitment process

 Biemer and Amaya (in press) consider the effects of erroneous 
weights on the total MSE
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A Few Take Aways
As we move towards integrating survey and Big Data, need to consider 
the total error.
 Sample recruitment bias is the least understood component of the total 

error.
 Data encoding errors (a.k.a measurement errors) are often ignored in 

Big Data analysis, yet they can have extreme effects on inferences and 
insights.

 Understanding these components will lead to statistical products of 
greater quality, utility and efficiency.
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Generalized TE Framework – Sample Recruitment Process 
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